scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study employed ensemble modeling to account for model uncertainty in bioprocess optimization and adopted a Bayesian approach to define the posterior distribution of the model parameters, based on which an ensemble of model parameters were generated using a uniformly distributed sampling of the parameter confidence region.

29 citations

Journal ArticleDOI
TL;DR: A fully automated production of artificial malaria vaccines was achieved using an integrated bioprocess configured for repeated fed batch cultivations and supplemented with an at‐line monitoring of the target protein production via HPLC.
Abstract: Here, we have studied the setup of an integrated bioprocess for the production of artificial Malaria vaccine candidates with Pichia pastoris. Production of pharmaceutically relevant proteins such as vaccines has high demands regarding protein processing in the bioreactor and for subsequent purification. To implement this challenging protein expression process, a highly instrumented bioreactor was configured for repeated fed batch cultivations and supplemented with an at-line monitoring of the target protein production via HPLC. The integration of a fast in situ purification of the sensitive products using an expanded bed adsorption for a sequential integrated bioprocess allows cyclic product separation. Thus, a fully automated production of artificial malaria vaccines was achieved.

28 citations

Patent
Soumitra Mishra1
06 Jul 2006
TL;DR: In this article, a process model for controlling a bioprocess equipment is developed, and the process model can be applied for process control purposes, but it is not suitable for the control of large-scale systems.
Abstract: A system and method for controlling a bioprocess equipment (FIG. 1 ) includes developing a process model. The process model can be applied for process control purposes.

28 citations

Journal ArticleDOI
TL;DR: Results indicate that the combination of a pulse‐based scale‐down approach with mechanistic models is a very suitable method to test strain robustness and physiological constraints at the early stages of bioprocess development.
Abstract: BACKGROUND: The impact of concentration gradients in large industrial‐scale bioreactors on microbial physiology can be studied in scale‐down bioreactors. However, scale‐down systems pose several challenges in construction, operation and footprint. Therefore, it is challenging to implement them in emerging technologies for bioprocess development, such as in high throughput cultivation platforms. In this study, a mechanistic model of a two‐compartment scale‐down bioreactor is developed. Simulations from this model are then used as bases for a pulse‐based scale‐down bioreactor suitable for application in parallel cultivation systems. RESULTS: As an application, the pulse‐based system model was used to study the misincorporation of non‐canonical branched‐chain amino acids into recombinant pre‐proinsulin expressed in Escherichia coli, as a response to oscillations in glucose and dissolved oxygen concentrations. The results show significant accumulation of overflow metabolites, up to 18.3% loss in product yield and up to 10‐fold accumulation of the non‐canonical amino acids norvaline and norleucine in the product in the pulse‐based cultivation, compared with a reference cultivation. CONCLUSIONS: Results indicate that the combination of a pulse‐based scale‐down approach with mechanistic models is a very suitable method to test strain robustness and physiological constraints at the early stages of bioprocess development. © 2018 Society of Chemical Industry

28 citations

Journal ArticleDOI
TL;DR: The bacterial stress and starvation responses, which are of potential importance for industrial microbial bioprocesses are summarised and an overview of current RNA analysis techniques is given.
Abstract: New developments in the RNA analysis techniques now enable a comprehensive view on the bacterial physiology under bioprocess conditions. The DNA-chip technology allows a genome wide transcriptional profiling of bacterial cells, whose genome sequence is available. Although the analyses of microbial bioprocesses have still been somewhat limited to date, this technique has already been successfully applied in different laboratories for the investigation of stress responses of selected industrially relevant bacterial hosts. Transcriptome analyses in combination with high resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry have been extensively applied for the description of general and specific stress and starvation responses of Escherichia coli and Bacillus subtilis. The consideration of bacterial stress and starvation responses is of crucial importance for the successful establishment of an industrial large scale bioprocess. Stress genes can be used as marker genes in order to monitor the fitness of industrial bacterial hosts during fermentation processes. This chapter gives an overview of current RNA analysis techniques. The bacterial stress and starvation responses, which are of potential importance for industrial microbial bioprocesses are summarised.

28 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023331
2022785
2021165
2020153
2019159
2018127