scispace - formally typeset
Search or ask a question
Topic

Bioreactor

About: Bioreactor is a research topic. Over the lifetime, 9980 publications have been published within this topic receiving 192690 citations. The topic is also known as: bioreactors.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the extraction of pure hydrogen from the fermentation of household waste by a mixed anaerobic bacterial flora was demonstrated, where simulated household waste (600 g) was fermented in a bioreactor.

97 citations

Journal ArticleDOI
TL;DR: The effect of powdered activated carbon addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatabilty through a series of batch and continuous microfiltration experiments.
Abstract: The effect of powdered activated carbon (PAC) addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatabilty through a series of batch and continuous microfiltration (MF) experiments. In both batch and continuous MF of the digestion broth, a flux improvement with PAC addition was achieved, especially when a higher shear rate and/or a higher PAC dose were applied. Both the fouling and cake layer resistances decreased continuously with increasing the PAC dose up to 5 g/L. PAC played an important role in subtantially reducing the biomass cake resistance due to its incompressible nature and higher backtransport velocities. PAC might have a scouring effect for removing the deposited biomass cake from the membrane surface while sorbing and/or coagulating dissolved organics and colloidal particles in the broth. The chemical oxygen demand and color in the effluent were much removed with PAC addition, and the system was also more st...

97 citations

Journal ArticleDOI
TL;DR: In this paper, the results of organic wastes' bioconversion into hydrogen and of the respective H 2 /CO 2 gas mixtures' separation by using active membrane systems (membrane contactors) with moving liquid carriers are presented.

96 citations

Journal ArticleDOI
TL;DR: The results demonstrated that the key organic nutrients can be regulated to improve the biomass and growth, and increase the ginsenoside yield in bioreactor cultures of P. ginseng adventitious roots.
Abstract: Organic nutrients play a central role during Panax ginseng adventitious root culture in bioreactor systems. To understand how the nutrient elements were uptaken during the adventitious root growth as well as the production of biomass and natural ginsenosides, a biotechnological approach to identifying the nutritional physiology of ginseng in a commercial-scale bioreactor was necessary. Normal MS medium nutrient in the bioreactor culture of adventitious roots resulted in slow growth, low biomass, and Rg and Rb ginsenoside contents. When the ginsenoside production increased to higher levels, a group of regulatory nutritional elements that have the potential to interact with biomass was identified. The effects of the salt strength of the medium, of macroelements, metal elements, the ammonia/nitrate ratio, sucrose concentration, and osmotic agents on the growth, the formation of biomass and the production of ginsenosides from adventitious roots were investigated. Appropriate conditions allowed for a maximum ginsenoide production of up to 12.42 [mg/g DW] to be obtained after 5 weeks of culture. The results demonstrated that the key organic nutrients can be regulated to improve the biomass and growth, and increase the ginsenoside yield in bioreactor cultures of P. ginseng adventitious roots.

96 citations

Journal ArticleDOI
TL;DR: The utility of the ambr™ system as a high throughput system for cell culture process development is demonstrated and changes to important process parameters in ambr resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors.
Abstract: Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development.

96 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
84% related
Fermentation
68.8K papers, 1.2M citations
82% related
Biofuel
23.8K papers, 902.4K citations
81% related
Activated carbon
39.6K papers, 920K citations
80% related
Freundlich equation
27.6K papers, 941.4K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023726
20221,549
2021388
2020401
2019413