scispace - formally typeset
Search or ask a question

Showing papers on "Biotic stress published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors highlight the importance of multifactorial stress combination and discuss its importance for developing climate change-resilient crops, even if the level of each individual stress involved in such "multifactorial" stress combination is low enough to not have a significant effect.
Abstract: Human activity is causing a global change in plant environment that includes a significant increase in the number and intensity of different stress factors. These include combinations of multiple abiotic and biotic stressors that simultaneously or sequentially impact plants and microbiomes causing a significant decrease in plant growth, yield, and overall health. It was recently found that with the increasing number and complexity of stressors simultaneously impacting a plant, plant growth and survival dramatically declines, even if the level of each individual stress, involved in such 'multifactorial stress combination', is low enough to not have a significant effect. Here we highlight this new concept of multifactorial stress combination and discuss its importance for our efforts to develop climate change-resilient crops.

55 citations


Journal ArticleDOI
TL;DR: Brassinosteroids have been shown in numerous studies to have a positive impact on plant responses to various biotic and abiotic stresses and their role in the growth and development of plants, and against various stresses, is discussed.
Abstract: Plants are vulnerable to a number of abiotic and biotic stresses that cause a substantial decrease in the production of plants. Plants respond to different environmental stresses by experiencing a series of molecular and physiological changes coordinated by various phytohormones. The use of phytohormones to alleviate stresses has recently achieved increasing interest. Brassinosteroids (BRs) are a group of polyhydroxylated steroidal phytohormones that are required for the development, growth, and productivity of plants. These hormones are involved in regulating the division, elongation, and differentiation of numerous cell types throughout the entire plant life cycle. BR studies have drawn the interest of plant scientists over the last few decades due to their flexible ability to mitigate different environmental stresses. BRs have been shown in numerous studies to have a positive impact on plant responses to various biotic and abiotic stresses. BR receptors detect the BR at the cell surface, triggering a series of phosphorylation events that activate the central transcription factor (TF) Brassinazole-resistant 1 (BZR1), which regulates the transcription of BR-responsive genes in the nucleus. This review discusses the discovery, occurrence, and chemical structure of BRs in plants. Furthermore, their role in the growth and development of plants, and against various stresses, is discussed. Finally, BR signaling in plants is discussed.

46 citations


Journal ArticleDOI
TL;DR: A review of the absorption and transportation of silica nanoparticles in plants, as well as their role and mechanisms in promoting plant growth and enhancing plant resistance against biotic and abiotic stresses is provided in this article .
Abstract: The demand for agricultural crops continues to escalate with the rapid growth of the population. However, extreme climates, pests and diseases, and environmental pollution pose a huge threat to agricultural food production. Silica nanoparticles (SNPs) are beneficial for plant growth and production and can be used as nanopesticides, nanoherbicides, and nanofertilizers in agriculture. This article provides a review of the absorption and transportation of SNPs in plants, as well as their role and mechanisms in promoting plant growth and enhancing plant resistance against biotic and abiotic stresses. In general, SNPs induce plant resistance against stress factors by strengthening the physical barrier, improving plant photosynthesis, activating defensive enzyme activity, increasing anti-stress compounds, and activating the expression of defense-related genes. The effect of SNPs on plants stress is related to the physical and chemical properties (e.g., particle size and surface charge) of SNPs, soil, and stress type. Future research needs to focus on the “SNPs–plant–soil–microorganism” system by using omics and the in-depth study of the molecular mechanisms of SNPs-mediated plant resistance.

35 citations


Journal ArticleDOI
TL;DR: In this paper , a global meta-analysis of recent studies testing the benefits of individual mycorrhizal fungi (AMF) species and main taxonomic groups in terms of plant performance (growth and nutrition).
Abstract: ●The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. ●We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. ●AMF had stronger positive effects on plant growth and phosphorus nutrition than on nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. ●Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.

30 citations


Journal ArticleDOI
TL;DR: In this paper , the authors elucidated the crosstalk of nanoparticles and phytohormones along with their potential regulatory role under plant stress conditions for the advancement and sustainability of plant production.

28 citations


Journal ArticleDOI
01 Jan 2022-Plants
TL;DR: In this paper , a review of biostimulant applications in viticulture is presented, highlighting the innumerable beneficial effects on vines brought by these products, including resistance inducers and elicitors.
Abstract: Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs’ implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.

27 citations


Journal ArticleDOI
TL;DR: In this article , the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms).

22 citations


Journal ArticleDOI
TL;DR: RiceBioS, an AI-based deep learning-enabled handheld device for identifying biotic stress in rice crops using the computational capabilities of handheld devices, adopts Edge-as-a-Service (EaaS) as an approach for classifying rice crop images into two categories – healthy and stressed.
Abstract: The identification of biotic stress of rice crops using handheld sensing devices is a challenge, as computationally intensive machine learning models are difficult to be executed in these devices. This challenge is exacerbated in farmers’ fields located in remote regions with limited internet connectivity. Thus, an individualiased plant-specific solution to detect biotic stress due to crop infections is required in farms adopting digital agricultural practices. The existing biotic stress detection solutions are deficient in their ability to make decisions in real-time. It is required to have a system that is capable of making decisions at the edge in handheld devices having limited computational capability. This paper proposes RiceBioS, an AI-based deep learning-enabled handheld device for identifying biotic stress in rice crops using the computational capabilities of handheld devices. RiceBioS adopts Edge-as-a-Service (EaaS) as an approach for classifying rice crop images into two categories – healthy and stressed. The biotic stress condition is further diagnosed into two types of infections, fungal (rice blast) and bacterial (bacterial leaf blight of rice) by pruning the shrunk deep learning classification model and incorporating an automated RoI detection and feature extraction workflow, which makes use of adaptive thresholding and hierarchial masking techniques to perform dimensionality reduction. While RiceBioS demonstrates a test accuracy of 93.25%, it exhibits a negligible tradeoff on a smartphone after deployment. This cutting edge solution helps the farmers make informed decisions based on real-time insights provided by the user-friendly mobile application interface of RiceBioS.

20 citations


Journal ArticleDOI
TL;DR: In this paper , the authors discuss biotic stress, elicitors, and elicitor-receptor mediated defense mechanism acquired for systemic resistance and in this context, they attempt to draw the attention of the researchers to find novel elicitors as disease control alternatives.

20 citations


Journal ArticleDOI
01 Jan 2022-Gene
TL;DR: The authors characterized the soybean plant pathogenesis-related (GmPR-1) gene repertoire at the sequence, structural and expression levels, and found that 23 genes are induced by stress conditions or exclusively expressed upon stress.

19 citations


Journal ArticleDOI
30 Jan 2022-Gene
TL;DR: This article characterized the soybean plant pathogenesis-related (GmPR-1) gene repertoire at the sequence, structural and expression levels, and found that 23 genes are induced by stress conditions or exclusively expressed upon stress.

Journal ArticleDOI
TL;DR: In this article , a review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Abstract: The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.

Journal ArticleDOI
TL;DR: A review of promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented in this article , focusing on promising metabolites that are crucial for growth, stress tolerance, and plant defense.
Abstract: Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc., and biotic stress such as a pathogenic attack, thus associated with survival strategy of plants. Stress responses of plants are vigorous and include multifaceted crosstalk between different levels of regulation, including regulation of metabolism and expression of genes for morphological and physiological adaptation. To date, many of these compounds and their biosynthetic pathways have been found in the plant kingdom. Metabolites like amino acids, phenolics, hormones, polyamines, compatible solutes, antioxidants, pathogen related proteins (PR proteins), etc. are crucial for growth, stress tolerance, and plant defense. This review focuses on promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented.

Journal ArticleDOI
TL;DR: There is sufficient evidence for endophyte-derived plant metabolites, which could be pursued as alternative sources of commercially important plant metabolites as well as the contribution of plant and microbial metabolomics for answering fundamental questions of plant-endophyte interaction.
Abstract: Among the various plant-associated microbiota, endophytes (the microbial communities inhabiting plant endosphere without causing disease symptoms) exhibit the most intimate and specific association with host plants. Endophytic microbes influence various aspects of plant responses (such as increasing availability of nutrients, tolerance against biotic and abiotic stresses, etc.) by modulating the primary and secondary metabolism of the host. Besides, endophytic microbes produce a diverse array of bioactive compounds, which have potential applications in the pharmaceutical, food, and cosmetic industries. Further, there is sufficient evidence for endophyte-derived plant metabolites, which could be pursued as alternative sources of commercially important plant metabolites. The field of bioprospecting, the discovery of novel chemistries, and endophyte-mediated production of plant metabolites have witnessed a boom with the advent of omics technologies (especially metabolomics) in endophyte research. The high throughput study of small metabolites at a particular timepoint or tissue forms the core of metabolomics. Being downstream to transcriptome and proteome, the metabolome provides the most direct reflection of the phenotype of an organism. The contribution of plant and microbial metabolomics for answering fundamental questions of plant-endophyte interaction, such as the effect of endophyte inoculation on plant metabolome, composition of metabolites on the impact of environmental stressors (biotic and abiotic), etc., have also been discussed.

Journal ArticleDOI
TL;DR: In this paper , a review suggests that some potential natural compounds can be used as alternatives and could be applied directly to plants to improve crop growth and productivity, and suggests subsequent applications to modulate crop stress tolerance.
Abstract: Excessive application of synthetic chemicals to crops is a serious environmental concern. This review suggests that some potential natural compounds can be used as alternatives and could be applied directly to plants to improve crop growth and productivity. These phytoextracts can serve as biostimulants to induce abiotic and biotic stress tolerance in different crops growing under diverse environmental conditions. The biosynthesis and accumulation of a variety of chemical compounds such as glycinebetaine, vitamins, nutrients, and secondary metabolites in some plants are of great value and an environmentally friendly cheaper source than several synthetic substances of a similar nature. The review summarizes the information regarding the potential role of different plant phytoextracts and suggests subsequent applications to modulate crop stress tolerance. Future studies should focus on the relative effectiveness of these plant-based extracts compared with their synthetic counterparts and focus on practical applications to signify sustainable practices linked with the use of natural products.

Journal ArticleDOI
TL;DR: In this paper , the authors provide an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under various abiotic and biotic stresses.
Abstract: Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.


Journal ArticleDOI
TL;DR: This review deals with ROS production, mechanisms involved in ROS signaling, host plant mechanisms in alleviating oxidative stress, and the roles of endophytes in maintaining ROS homeostasis under biotic stress.
Abstract: Aerobic living is thought to generate reactive oxygen species (ROS), which are an inevitable chemical component. They are produced exclusively in cellular compartments in aerobic metabolism involving significant energy transfer and are regarded as by-products. ROS have a significant role in plant response to pathogenic stress, but the pattern varies between necrotrophs and biotrophs. A fine-tuned systemic induction system is involved in ROS-mediated disease development in plants. In regulated concentrations, ROS act as a signaling molecule and activate different pathways to suppress the pathogens. However, an excess of these ROS is deleterious to the plant system. Along with altering cell structure, ROS cause a variety of physiological reactions in plants that lower plant yield. ROS also degrade proteins, enzymes, nucleic acids, and other substances. Plants have their own mechanisms to overcome excess ROS and maintain homeostasis. Microbes, especially endophytes, have been reported to maintain ROS homeostasis in both biotic and abiotic stresses by multiple mechanisms. Endophytes themselves produce antioxidant compounds and also induce host plant machinery to supplement ROS scavenging. The structured reviews on how endophytes play a role in ROS homeostasis under biotic stress were very meager, so an attempt was made to compile the recent developments in ROS homeostasis using endophytes. This review deals with ROS production, mechanisms involved in ROS signaling, host plant mechanisms in alleviating oxidative stress, and the roles of endophytes in maintaining ROS homeostasis under biotic stress.


Journal ArticleDOI
25 Aug 2022-Plants
TL;DR: The endophyte biology, colonization efficacy and diversity pattern of endophytes are discussed, and the molecular aspect of plant–endophyte interaction in biotic stress management is summarized.
Abstract: Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host–endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant–endophyte interaction in biotic stress management.

Journal ArticleDOI
TL;DR: In this article , a mini review highlights the current state of the art on seed biopriming, focusing on the identification and application of novel Plant Growth Promoting Rhizobacteria (PGPR) in cultivated plant species under conditions where crop productivity is limited.
Abstract: In the forthcoming era of climate change and ecosystem degradation, fostering the use of beneficial microbiota in agroecosystems represents a major challenge toward sustainability. Some plant-associated bacteria, called Plant Growth Promoting Rhizobacteria (PGPR), may confer growth-promoting advantages to the plant host, through enhancing nutrient uptake, altering hormone homeostasis, and/or improving tolerance to abiotic stress factors and phytopathogens. In this regard, exploring the key ecological and evolutionary interactions between plants and their microbiomes is perquisite to develop innovative approaches and novel natural products that will complement conventional farming techniques. Recently, details of the molecular aspects of PGPR-mediated tolerance to various stress factors have come to light. At the same time the integration of the recent advances in the field of plant-microbiome crosstalk with novel -omic approaches will soon allow us to develop a holistic approach to “prime” plants against unfavorable environments. This mini review highlights the current state of the art on seed biopriming, focusing on the identification and application of novel PGPR in cultivated plant species under conditions where crop productivity is limited. The potential challenges of commercializing these PGPR as biostimulants to improve crop production under multiple environmental constraints of plant growth, as well as concerns about PGPR application and their impact on ecosystems, are also discussed.

Journal ArticleDOI
30 Apr 2022-Plants
TL;DR: The role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses is discussed in this article , where the authors provide an overview of recent research on the role and importance of silicon and highlight possible directions for further research.
Abstract: In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.

Journal ArticleDOI
TL;DR: This work discovers six pathogen-induced biosynthetic pathways that share a common regulatory network and form part of an orchestrated defense response in wheat that provide key insights into the molecular basis of biotic stress responses in wheat and open potential avenues for crop improvement.
Abstract: Significance Wheat is a globally important food crop that suffers major yield losses due to outbreaks of severe disease. A better mechanistic understanding of how wheat responds to pathogen attack could identify new strategies for enhancing disease resistance. Here, we discover six pathogen-induced biosynthetic pathways that share a common regulatory network and form part of an orchestrated defense response. Investigation of the wheat genome reveals that these pathways are each encoded by biosynthetic gene clusters (BGCs). We further show that these BGCs produce flavonoids and terpenes that may serve as phytoalexins or defense-related signaling molecules. Our results provide key insights into the molecular basis of biotic stress responses in wheat and open potential avenues for crop improvement.

Journal ArticleDOI
TL;DR: The analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved is focused on, revealing both the factors in common, as well as those that need to be addressed in future research.
Abstract: Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism’s cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.

Journal ArticleDOI
TL;DR: This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, andHow microbial associates influence ROS induction by aphids.
Abstract: Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are produced in plants in response to many biotic and abiotic stressors, and they can enhance stress adaptation in certain circumstances or mediate symptom development in others. The roles of ROS in plant-pathogen interactions have been extensively studied, but far less is known about their involvement in plant-insect interactions. A growing body of evidence, however, indicates that ROS accumulate in response to aphids, an economically damaging group of phloem-feeding insects. This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, and how microbial associates influence ROS induction by aphids. We will also explore the potential adaptive significance of intra- and extracellular oxidative responses to aphid infestation in compatible and incompatible interactions and highlight knowledge gaps that deserve further exploration.

Journal ArticleDOI
TL;DR: In this article , the authors reviewed the current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses.
Abstract: Abstract Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.

Journal ArticleDOI
TL;DR: In this paper , the authors explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.
Abstract: Abstract Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.

Journal ArticleDOI
01 Jan 2022-Biocell
TL;DR: Osmotin and its homolog proteins (OLPs) are ubiquitous in all fruits and vegetables as mentioned in this paper , and their over-expression in plants provides tolerance to many abiotic and biotic stresses, such as structural response (cell wall strengthening and waxy epidermal cuticle development) and metabolic changes.
Abstract: Plants are recurrently exposed to myriads of biotic and abiotic stresses leading to several biochemical and physiological variations that cause severe impacts on plant growth and survival. To overcome these challenges, plants activate two primary defense mechanisms, such as structural response (cell wall strengthening and waxy epidermal cuticle development) and metabolic changes, including the synthesis of anti-microbial compounds and proteins, especially the pathogenesis-related (PR) proteins. PR proteins are members of a super large family of defense proteins that exhibit antimicrobial activities. Their over-expression in plants provides tolerance to many abiotic and biotic stresses. PR proteins have been classified into 17 families, including PR-5–also called thaumatin-like proteins (TLPs) that involve osmotin and osmotin-like proteins (OLPs). Osmotin was first identified in tobacco (Nicotiana tabacum var. Wisconsin 38), and then its homolog proteins (OLPs) were reported from the whole plant kingdom. Osmotin and OLPs are ubiquitous in all fruits and vegetables. Their expression has been detected in various plant tissues and organs. The phylogenetic tree studies revealed that the osmotin group originated from spermatophytes. Moreover, the atomic structure of OLP has shown similarity to thaumatin and TLPs from monocot and eudicot species, which determines a strong evolutionary pressure in flowering plants for conserving thaumatin fold. This is associated with the role of these proteins against pathogens as defense molecules and to induce stress tolerance to plants against several biotic and abiotic factors. In this review, we have briefly described the development history of osmotin, including its function and mechanism to induce biotic and abiotic stress tolerance to plants.

Journal ArticleDOI
TL;DR: The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature.
Abstract: Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses.

Journal ArticleDOI
TL;DR: In this paper , the authors explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.
Abstract: Abstract Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.