scispace - formally typeset
Search or ask a question
Topic

Bipolar junction transistor

About: Bipolar junction transistor is a research topic. Over the lifetime, 21048 publications have been published within this topic receiving 236522 citations. The topic is also known as: BJT & bipolar transistor.


Papers
More filters
Book

[...]

01 Jan 1967
TL;DR: The Planar Technology of Semiconductor Surfaces is described in this article, where it is shown that the planar planar technology can be used to model the surface effects on p-n junction transistors.
Abstract: The Planar Technology. Solid-State Technology. Vapor-Phase Growth. Thermal Oxidation. Solid-State Diffusion. Semiconductors and Semiconductor Devices. Elements of Semiconductor Physics. Semiconductors under Non-Equilibrium Conditions. p-n Junction. Junction Transistor. Junction Field-Effect Transistors. Surface Effects and Surface-Controlled Devices. Theory of Semiconductor Surfaces. Surface Effects on p-n Junctions. Surface Field-Effect Transistors. Properties of the Silicon-Silicon Dioxide System.

2,382 citations

[...]

01 Jan 1981

2,150 citations

Book

[...]

31 Mar 1991
TL;DR: In this paper, the authors present a set of techniques for defect detection in SOI materials, including the following: 2.1.1 Silicon-on-Zirconia (SOZ), 2.2.2 E-beam recrystallization, 2.3.3, 3.4.4, and 3.5.5 Other defect assessment techniques.
Abstract: 1 Introduction.- 2 SOI Materials.- 2.1 Introduction.- 2.2 Heteroepitaxial techniques.- 2.2.1 Silicon-on-Sapphire (SOS).- 2.2.2 Other heteroepitaxial SOI materials.- 2.2.2.1 Silicon-on-Zirconia (SOZ).- 2.2.2.2 Silicon-on-Spinel.- 2.2.2.3 Silicon on Calcium Fluoride.- 2.3 Dielectric Isolation (DI).- 2.4 Polysilicon melting and recrystallization.- 2.4.1 Laser recrystallization.- 2.4.2 E-beam recrystallization.- 2.4.3 Zone-melting recrystallization.- 2.5 Homoepitaxial techniques.- 2.5.1 Epitaxial lateral overgrowth.- 2.5.2 Lateral solid-phase epitaxy.- 2.6 FIPOS.- 2.7 Ion beam synthesis of a buried insulator.- 2.7.1 Separation by implanted oxygen (SIMOX).- 2.7.1.1 "Standard"SIMOX.- 2.7.1.2 Low-dose SIMOX.- 2.7.1.3 ITOX.- 2.7.1.4 SMOXMLD.- 2.7.1.5 Related techniques.- 2.7.1.6 Material quality.- 2.7.2 Separation by implanted nitrogen (SIMNI).- 2.7.3 Separation by implanted oxygen and nitrogen (SIMON).- 2.7.4 Separation by implanted Carbon.- 2.8 Wafer Bonding and Etch Back (BESOI).- 2.8.1 Hydrophilic wafer bonding.- 2.8.2 Etch back.- 2.9 Layer transfer techniques.- 2.9.1 Smart-Cut(R).- 2.9.1.1 Hydrogen / rare gas implantation.- 2.9.1.2 Bonding to a stiffener.- 2.9.1.3 Annealing.- 2.9.1.4 Splitting.- 2.9.1.5 Further developments.- 2.9.2 Eltran(R).- 2.9.2.1 Porous silicon formation.- 2.9.2.2 The original Eltran(R) process.- 2.9.2.3 Second-generation Eltran(R) process.- 2.9.3 Transferred layer material quality.- 2.10 Strained silicon on insulator (SSOI).- 2.11 Silicon on diamond.- 2.12 Silicon-on-nothing (SON).- 3 SOI Materials Characterization.- 3.1 Introduction.- 3.2 Film thickness measurement.- 3.2.1 Spectroscopic reflectometry.- 3.2.2 Spectroscopic ellipsometry.- 3.2.3 Electrical thickness measurement.- 3.3 Crystal quality.- 3.3.1 Crystal orientation.- 3.3.2 Degree of crystallinity.- 3.3.3 Defects in the silicon film.- 3.3.3.1 Most common defects.- 3.3.3.2 Chemical decoration of defects.- 3.3.3.3 Detection of defects by light scattering.- 3.3.3.4 Other defect assessment techniques.- 3.3.3.5 Stress in the silicon film.- 3.3.4 Defects in the buried oxide.- 3.3.5 Bond quality and bonding energy.- 3.4 Carrier lifetime.- 3.4.1 Surface Photovoltage.- 3.4.2 Photoluminescence.- 3.4.3 Measurements on MOS transistors.- 3.4.3.1 Accumulation-mode transistor.- 3.4.3.2 Inversion-mode transistor.- 3.4.3.3 Bipolar effect.- 3.5 Silicon/Insulator interfaces.- 3.5.1 Capacitance measurements.- 3.5.2 Charge pumping.- 3.5.3 ?-MOSFET.- 4 SOI CMOS Technology.- 4.1 SOI CMOS processing.- 4.1.1 Fabrication yield and fabrication cost.- 4.2 Field isolation.- 4.2.1 LOCOS.- 4.2.2 Mesa isolation.- 4.2.3 Shallow trench isolation.- 4.2.4 Narrow-channel effects.- 4.3 Channel doping profile.- 4.4 Source and drain engineering.- 4.4.1 Silicide source and drain.- 4.4.2 Elevated source and drain.- 4.4.3 Tungsten clad.- 4.4.4 Schottky source and drain.- 4.5 Gate stack.- 4.5.1 Gate material.- 4.5.2 Gate dielectric.- 4.5.3 Gate etch.- 4.6 SOI MOSFET layout.- 4.6.1 Body contact.- 4.7 SOI-bulk CMOS design comparison.- 4.8 ESD protection.- 5 The SOI MOSFET.- 5.1 Capacitances.- 5.1.1 Source and drain capacitance.- 5.1.2 Gate capacitance.- 5.2 Fully and partially depleted devices.- 5.3 Threshold voltage.- 5.3.1 Body effect.- 5.3.2 Short-channel effects.- 5.4 Current-voltage characteristics.- 5.4.1 Lim & Fossum model.- 5.4.2 C?-continuous model.- 5.5 Transconductance.- 5.5.1 gm/ID ratio.- 5.5.2 Mobility.- 5.6 Basic parameter extraction.- 5.6.1 Threshold voltage and mobility.- 5.6.2 Source and drain resistance.- 5.7 Subthreshold slope.- 5.8 Ultra-thin SOI MOSFETs.- 5.8.1 Threshold voltage.- 5.8.2 Mobility.- 5.9 Impact ionization and high-field effects.- 5.9.1 Kink effect.- 5.9.2 Hot-carrier degradation.- 5.10 Floating-body and parasitic BJT effects.- 5.10.1 Anomalous subthreshold slope.- 5.10.2 Reduced drain breakdown voltage.- 5.10.3 Other floating-body effects.- 5.11 Self heating.- 5.12 Accumulation-mode MOSFET.- 5.12.1 I-V characteristics.- 5.12.2 Subthreshold slope.- 5.13 Unified body-effect representation.- 5.14 RF MOSFETs.- 5.15 CAD models for SOI MOSFETs.- 6 Other SOI Devices.- 6.1 Multiple-gate SOI MOSFETs.- 6.1.1 Multiple-gate SOI MOSFET structures.- 6.1.1.1 Double-gate SOI MOSFETs.- 6.1.1.2 Triple-gate SOI MOSFETs.- 6.1.1.3 Surrounding-gate SOI MOSFETs.- 6.1.1.4 Triple-plus gate SOI MOSFETs..- 6.1.2 Device characteristics.- 6.1.2.1 Current drive.- 6.1.2.2 Short-channel effects.- 6.1.2.3 Threshold voltage.- 6.1.2.4 Volume inversion.- 6.1.2.5 Mobility.- 6.2 MTCMOS/DTMOS.- 6.3 High-voltage devices.- 6.3.1 VDMOS and LDMOS.- 6.3.2 Other high-voltage devices.- 6.4 Junction Field-Effect Transistor.- 6.5 Lubistor.- 6.6 Bipolar junction transistors.- 6.7 Photodiodes.- 6.8 G4 FET.- 6.9 Quantum-effect devices.- 7 The SOI MOSFET in a Harsh Environment.- 7.1 Ionizing radiations.- 7.1.1 Single-event phenomena.- 7.1.2 Total dose effects.- 7.1.3 Dose-rate effects.- 7.2 High-temperature operation.- 7.2.1 Leakage current.- 7.2.2 Threshold voltage.- 7.2.3 Output conductance.- 7.2.4 Subthreshold slope.- 8 SOI Circuits.- 8.1 Introduction.- 8.2 Mainstream CMOS applications.- 8.2.1 Digital circuits.- 8.2.2 Low-voltage, low-power digital circuits.- 8.2.3 Memory circuits.- 8.2.3.1 Non volatile memory devices.- 8.2.3.2 Capacitorless DRAM.- 8.2.4 Analog circuits.- 8.2.5 Mixed-mode circuits.- 8.3 Niche applications.- 8.3.1 High-temperature circuits.- 8.3.2 Radiation-hardened circuits.- 8.3.3 Smart-power circuits.- 8.4 Three-dimensional integration.

1,581 citations

Book

[...]

01 Jan 1986
TL;DR: In this article, the authors present a list of symbols for metal-oxide-silicon systems, including Mos Field-effect transistors, high-field effects, and high-frequency effects.
Abstract: Semiconductor Electronics. Silicon Technology. Metal--Semiconductor Contacts. pn Junctions. Currents in pn Junctions. Bipolar Transistors I: Basic Properties. Bipolar Transistors II: Limitations and Models. Properties of the Metal--Oxide--Silicon System. Mos Field--Effect Transistors I: Physical Effects and Models. Mos Field--Effect Transistors II: High--Field Effects. Answers to Selected Problems. Selected List of Symbols. Index.

1,368 citations

Book

[...]

30 Oct 1989
TL;DR: In this paper, the authors present a review of the properties of Semiconductor devices and compare them with the Monte Carlo simulation of the two-dimensional electron gas (2DEG) model.
Abstract: 1 Introduction.- References.- 2 Charge Transport in Semiconductors.- 2.1 Electron Dynamics.- 2.2 Energy Bands.- 2.2.1 Relationship of Energy to Wavevector.- 2.2.2 Effective Masses.- 2.2.3 Nonparabolicity.- 2.2.4 Herring and Vogt Transformation.- 2.2.5 Actual Bands of Real Semiconductors.- 2.3 Scattering Mechanisms.- 2.3.1 Classification and Physical Discussion.- 2.3.2 Fundamentals of Scattering.- 2.4 Scattering Probabilities.- 2.4.1 Phonon Scattering, Deformation-Potential Interaction.- 2.4.2 Phonon Scattering, Electrostatic Interaction.- 2.4.3 Ionized Impurity Scattering.- 2.4.4 Carrier-Carrier Scattering.- 2.5 Transport Equation.- 2.6 Linear Response and the Relaxation Time Approximation.- 2.6.1 Relaxation Times for the Various Scattering Mechanisms.- 2.6.2 Carrier Mobilities in Various Materials.- 2.7 Diffusion, Noise, and Velocity Autocorrelation Function.- 2.7.1 Basic Macroscopic Equations of Diffusion.- 2.7.2 Diffusion, Autocorrelation Function, and Noise.- 2.7.3 Electron Lifetime and Diffusion Length.- 2.8 Hot Electrons.- 2.9 Transient Transport.- 2.10 The Two-dimensional Electron Gas.- 2.10.1 Subband Levels and Wavefunctions.- 2.10.2 Scattering Rates.- References.- 3 The Monte Carlo Simulation.- 3.1 Fundamentals.- 3.2 Definition of the Physical System.- 3.3 Initial Conditions.- 3.4 The Free Flight, Self Scattering.- 3.5 The Scattering Process.- 3.6 The Choice of the State After Scattering.- 3.6.1 Phonon Scattering, Deformation-Potential Interaction.- 3.6.2 Phonon Scattering, Electrostatic Interaction.- 3.6.3 Ionized Impurity Scattering.- 3.6.4 Carrier-Carrier Scattering.- 3.7 Collection of Results for Steady-State Phenomena.- 3.7.1 Time Averages.- 3.7.2 Synchronous Ensemble.- 3.7.3 Statistical Uncertainty.- 3.8 The Ensemble Monte Carlo (EMC).- 3.9 Many Particle Effects.- 3.9.1 Carrier-Carrier Scattering.- 3.9.2 Molecular Dynamics and Monte Carlo Method.- 3.9.3 Degeneracy in Monte Carlo Calculations.- 3.10 Monte Carlo Simulation of the 2DEG.- 3.11 Special Topics.- 3.11.1 Periodic Fields.- 3.11.2 Diffusion, Autocorrelation Function, and Noise.- 3.11.3 Ohmic Mobility.- 3.11.4 Impact Ionization.- 3.11.5 Magnetic Fields.- 3.11.6 Optical Excitation.- 3.11.7 Quantum Mechanical Corrections.- 3.12 Variance-reducing Techniques.- 3.12.1 Variance Due to Thermal Fluctuations.- 3.12.2 Variance Due to Valley Repopulation.- 3.12.3 Variance Related to Improbable Electron States.- 3.13 Comparison with Other Techniques.- 3.13.1 Analytical Techniques.- 3.13.2 The Iterative Technique.- 3.13.3 Comparison of the Different Techniques.- References.- 4 Review of Semiconductor Devices.- 4.1 Introduction.- 4.2 Historical Evolution of Semiconductor Devices.- 4.2.1 Evolution of Si Devices.- 4.2.2 Evolution of GaAs Devices.- 4.2.3 Technological Features.- 4.2.4 Scaling and Miniaturization.- 4.3 Physical Basis of Semiconductor Devices.- 4.3.1 p-n Junction.- 4.3.2 Bipolar Transistors.- 4.3.3 Heterojunction Bipolar Transistor.- 4.3.4 Metal-Semiconductor Contacts.- 4.3.5 Metal-Semiconductor Field-Effect Transistor.- 4.3.6 Metal-Oxide-Semiconductor Field-Effect Transistor.- 4.3.7 High Electron Mobility Transistor.- 4.3.8 Hot Electron Transistors.- 4.3.9 Permeable Base Transistor.- 4.4 Comparison of Semiconductor Devices.- 4.4.1 Device Parameters.- 4.4.2 Comparison of Semiconductor Devices.- References.- 5 Monte Carlo Simulation of Semiconductor Devices.- 5.1 Introduction.- 5.2 Geometry of the System.- 5.2.1 Boundary Conditions.- 5.2.2 Grid Definition.- 5.2.3 Superparticles.- 5.3 Particle-Mesh Force Calculation.- 5.3.1 Particle-Mesh Calculation in One Dimension.- 5.3.2 Charge Assignment Schemes in Two Dimensions.- 5.4 Poisson Solver and Field Distribution.- 5.4.1 Finite Difference Scheme.- 5.4.2 Matrix Methods.- 5.4.3 Rapid Elliptic Solvers (RES).- 5.4.4 Iterative Methods.- 5.4.5 Calculation of the Electric Field.- 5.4.6 The Collocation Method.- 5.5 The Monte Carlo Simulation of Semiconductor Devices.- 5.5.1 Initial Conditions.- 5.5.2 Time Cycles.- 5.5.3 Free Flight.- 5.5.4 Scattering.- 5.5.5 Carrier-Carrier Scattering.- 5.5.6 Degenerate Statistics.- 5.5.7 Statistics.- 5.5.8 Static Characteristics.- 5.5.9 A.C. Characteristics.- 5.5.10 Noise.- References.- 6 Applications.- 6.1 Introduction.- 6.2 Diodes.- 6.2.1 n+-n-n+ Diodes.- 6.2.2 Schottky Diode.- 6.3 MESFET.- 6.3.1 Short Channel Effects.- 6.3.2 Geometry Effects.- 6.3.3 Space-Charge Injection FET.- 6.3.4 Conclusions.- 6.4 HEMT and Heterojunction Real Space Transfer Devices.- 6.4.1 HEMT.- 6.4.2 Real-Space Transfer Devices.- 6.4.3 Velocity-Modulation Field Effect Transistor.- 6.5 Bipolar Transistor.- 6.6 HBT.- 6.7 MOSFET and MISFET.- 6.7.1 MOSFET.- 6.7.2 GaAs Injection-modulated MISFET.- 6.7.3 Conclusions.- 6.8 Hot Electron Transistors.- 6.8.1 The THETA Device.- 6.8.2 GaAs FET with Hot-Electron Injection Structure.- 6.8.3 Planar-doped-Barrier Transistors.- 6.9 Permeable Base Transistor.- 6.10 Comparison with Traditional Simulators.- References.- Appendix A. Numerical Evaluation of Some Integrals of Interest.- References.- Appendix B. Generation of Random Numbers.- References.

1,038 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
94% related
CMOS
81.3K papers, 1.1M citations
91% related
Capacitor
166.6K papers, 1.4M citations
88% related
Amplifier
163.9K papers, 1.3M citations
88% related
Wafer
118K papers, 1.1M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202340
202286
2021146
2020233
2019295
2018311