scispace - formally typeset
Search or ask a question
Topic

Birefringence

About: Birefringence is a research topic. Over the lifetime, 23586 publications have been published within this topic receiving 363407 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new material NH4B4O6F is reported, which exhibits a wide deep-ultraviolet transparent range and suitable birefringence that enables frequency doubling below 200 nm and possesses large nonlinear coefficients about 2.5 times that of KBBF.
Abstract: Nonlinear optical materials are essential for the development of solid-state lasers. KBe2BO3F2 (KBBF) is a unique nonlinear optical material for generation of deep-ultraviolet coherent light; however, its industrial application is limited. Here, we report a new material NH4B4O6F, which exhibits a wide deep-ultraviolet transparent range and suitable birefringence that enables frequency doubling below 200 nm. NH4B4O6F possesses large nonlinear coefficients about 2.5 times that of KBBF. In addition, it is easy to grow bulk crystals and does not contain toxic elements.

752 citations

Journal ArticleDOI
TL;DR: In this article, an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG.
Abstract: We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. In particular, the three-dimensional PBG can be completely opened or closed by applying an electric field which rotates the axis of the nematic molecules relative to the inverse opal backbone. Tunable light localization effects may be realized by controlling the orientational disorder in the nematic.

718 citations

Journal ArticleDOI
TL;DR: It is shown that the polarization states of electromagnetic waves can be manipulated through reflections by an anisotropic metamaterial plate, and all possible polarizations are realizable via adjusting material parameters.
Abstract: We show that the polarization states of electromagnetic waves can be manipulated through reflections by an anisotropic metamaterial plate, and all possible polarizations (circular, elliptic, and linear) are realizable via adjusting material parameters. In particular, a linearly polarized light converts its polarization completely to the cross direction after reflection under certain conditions. Microwave experiments were performed to successfully realize these ideas and results are in excellent agreement with numerical simulations.

707 citations

Book
17 Dec 1993
TL;DR: In this paper, the effect of an electric field on the structure of liquid crystals has been studied in terms of the effect on the phase transition temperature and the elasticity of the liquid crystal.
Abstract: 1 Liquid Crystalline State.- 1.1 Structure of Liquid Crystal Phases.- 1.1.1 Molecules.- 1.1.2 Thermotropic Mesophases Formed by Achiral Rod-Like Molecules.- 1.1.3 Thermotropic Chiral Mesophases.- 1.1.4 Mesophases of Disc-Like and Lath-Like Molecules.- 1.1.5 Polymer Liquid Crystals.- 1.1.6 Lyotropic Liquid Crystals.- 1.2 Mixtures.- 1.2.1 Nematic Eutectics.- 1.2.2 Reentrant Phases.- 1.2.3 Mixtures of Smectics.- 1.2.4 Nemato-Cholesteric Compositions.- 1.2.5 Ferroelectric Mixtures.- 1.3 Liquid Crystalline Materials.- 1.3.1 Chemical Classes.- 1.3.2 Chemical Structure and Transition Temperatures.- 1.3.3 Material.- 1.4 Direct Influence of an Electric Field on the Structure of Liquid Crystals.- 1.4.1 Field-Induced Shifts of the Phase Transition Temperatures.- 1.4.2 Influence of the Field on the Order Parameters.- 1.4.3 Field-Induced Changes in Symmetry.- References.- 2 Properties of the Materials.- 2.1 Dielectric Permittivity.- 2.1.1 Isotropic Liquids.- 2.1.2 Dielectric Anisotropy of Nematics.- 2.1.3 Nematic Mixtures.- 2.1.4 Other Phases.- 2.2 Electrical Conductivity.- 2.2.1 Dependence on Impurity Concentration.- 2.2.2 Conductivity Anisotropy.- 2.3 Optical Anisotropy and Dichroism.- 2.3.1 Optical Anisotropy.- 2.3.2 Dichroism.- 2.4 Viscoelastic Properties.- 2.4.1 Elasticity.- 2.4.2 Viscosity.- 2.4.3 Diffusion Coefficients.- References.- 3 Surface Phenomena.- 3.1 Structure of Surface Layers.- 3.1.1 Surface-Induced Changes in the Orientational Order Parameter.- 3.1.2 Surface-Induced Smectic Ordering.- 3.1.3 Polar Surface Order and Surface Polarization.- 3.2 Surface Energy.- 3.2.1 Wetting of a Solid Substrate.- 3.2.2 Surface Energy and Anchorage of a Nematic Liquid Crystal.- 3.2.3 Techniques for Measuring Anchoring Energies.- 3.3 Cells and Orientation.- 3.3.1 Electrooptical Cells.- 3.3.2 Liquid Crystal Orientation.- 3.3.3 Anchoring Transitions.- References.- 4 Electrooptical Effects Due to the Uniform Distortion of Nematic Liquid Crystals.- 4.1 Electrically Controlled Birefringence.- 4.1.1 Director Distribution.- 4.1.2 Tilted Directors at the Boundaries.- 4.1.3 Different Geometries. Simultaneous Action of Electric and Magnetic Fields.- 4.1.4 Effect of Electrical Conductivity.- 4.1.5 The Frederiks Transition for a Weak Anchoring at the Boundaries.- 4.1.6 Dynamics of the Frederiks Transition.- 4.1.7 The Frederiks Transition in Ferronematic Liquid Crystals.- 4.1.8 Optical Characteristics of the Electrically Controlled Birefringence Effect.- 4.2 Twist-Effect.- 4.2.1 Preparation of Twist Cells, Optical Properties at Zero Field.- 4.2.2 Transmission-Voltage Curve for Normal Light Incidence.- 4.2.3 Electrooptics of the Twist Cell for Oblique Incidence.- 4.2.4 Matrix Addressed Displays and Multiplexing Capability of Twist-Effect Materials.- 4.2.5 Dynamics of the Twist Effect.- 4.2.6 New Possibilities.- 4.3 Supertwist Effects.- 4.4 "Guest-Host" Effect.- 4.4.1 Change in Intensity of the Coloring.- 4.4.2 Colorimetry of "Guest-Host" Displays.- 4.4.3 Color Switching.- 4.4.4 Change in Fluorescence.- 4.5 The Flexoelectric Effect.- 4.5.1 Physical Reasons.- 4.5.2 Static Flexoelectric Distortion in Different Geometries Determination of Flexoelectric Moduli.- 4.5.3 Dynamics of the Flexoelectric Effect.- 4.5.4 Microscopic Approach to Determination of the Flexoelectric Coefficients.- 4.6 Reflectivity in an Electric Field.- 4.6.1 Optical Properties of Nontwisted Nematic Layers.- 4.6.2 Various Techniques.- 4.7 Field Behavior of the Isotropic Phase.- 4.7.1 The Kerr Effect in the Isotropic Phase.- 4.7.2 Reorientation of Surface Quasi-Nematic Layers.- 4.8 Electric Field Effects in Nematic Polymers.- 4.8.1 Thermotropic Mesophases.- 4.8.2 Lyotropic Polymers 212.- 4.9 Electrooptical Properties of Polymer Dispersed Liquid Crystal Films.- References.- 5 Modulated and Nonuniform Structures in Nematic Liquid Crystals.- 5.1 Orientational Modulated Structures.- 5.1.1 Flexoelectric Domains.- 5.1.2 Dielectric Two-Dimensional Structure in the Frederiks Transition.- 5.1.3 Other Types of Modulated Structures.- 5.2 Electrohydrodynamic Modulated Structures.- 5.2.1 Low-Frequency Limit The Kapustin-Williams Domains.- 5.2.2 Different Types of Low-Frequency Electrohydrodynamics.- 5.2.3 Electrohydrodynamic Instability in Nematics with Oblique Director Orientation at the Boundaries.- 5.2.4 Electrohydrodynamic Instability: "Chevron" Mode.- 5.2.5 Anisotropic Instabilities for Different Field and Cell Configurations.- 5.2.6 Allowance for Flexoelectricity in Anisotropic Domain Structures.- 5.2.7 High-Frequency Inertia Anisotropic Mode.- 5.2.8 Modulated Structures with Large Periods in Homeotropic Nematics.- 5.2.9 "Isotropic" Mechanism of the Excitation of Electrohydrodynamic Domains.- 5.2.10 Instabilities in Homeotropic Nematics with ?? >0.- 5.2.11 Classification of Threshold Conditions for Different Instabilities in Nematics.- 5.2.12 Electrohydrodynamic Instabilities in Polymer Nematics.- 5.2.13 The Instabilities above the Threshold Voltage. Dynamic Scattering of Light.- 5.3 Nematics in Spatially Nonuniform Fields.- 5.3.1 Homeotropic Orientation.- 5.3.2 Homogeneous Alignment.- 5.3.3 Twist Cells.- References.- 6 Electrooptical Properties of Cholesterics and Nonferroelectric Smectics.- 6.1 The Pitch of Helix and the Optical Properties of Cholesterics.- 6.1.1 Textures.- 6.1.2 Methods of Measuring the Pitch.- 6.1.3 Optical Properties of Planar Cholesteric Textures.- 6.1.4 Diffraction on the Focal-Conic Texture.- 6.1.5 Pitch Dependence on Cell Thickness.- 6.2 Field-Induced Dielectric Instabilities of Cholesterics.- 6.2.1 Texture Transitions.- 6.2.2 Instability of the Planar Cholesteric Texture.- 6.2.3 Field Untwisting of a Cholesteric Helix.- 6.2.4 Electrically Switched Bistable Structures.- 6.3 Electrohydrodynamic Instabilities in Cholesterics.- 6.4 Flexoelectric Effects.- 6.4.1 Fast Linear-in-Field Rotation of the Cholesteric Helix.- 6.4.2 Flexoelectric Domains.- 6.5 Electrooptical Effects in Blue Phases.- 6.5.1 Optical Features.- 6.5.2 Field Behavior.- 6.6 Electric Field Behavior of Nonferroelectric Smectics.- 6.6.1 The Frederiks Transition in a Smectic A.- 6.6.2 Dielectrically Induced Texture Transitions.- 6.6.3 The Frederiks Transition in a Smectic C.- 6.6.4 Electrohydrodynamic Instabilities in Smectics A and C.- References.- 7 Ferroelectric Liquid Crystals.- 7.1 The Physical Properties of Ferroelectric Liquid Crystals. Methods of Measurement.- 7.1.1 The Symmetry.- 7.1.2 The Microscopic Approach. Ferroelectric Mixtures.- 7.1.3 Physical Parameters.- 7.1.4 Tilt Angle.- 7.1.5 Spontaneous Polarization.- 7.1.6 Flexoelectric Polarization.- 7.1.7 Rotational Viscosity.- 7.1.8 Helix Pitch.- 7.1.9 Dielectric Properties.- 7.1.10 Optical Properties.- 7.1.11 Total Free Energy with Allowance for Anchoring.- 7.2 Electrooptical Effects in Ferroelectric Liquid Crystals.- 7.2.1 The Clark-Lagerwall Effect.- 7.2.2 Deformed Helix Ferroelectric Effect.- 7.2.3 Electroclinic Effect Near the Smectic A ? C* Phase Transition.- 7.2.4 Other Electrooptical Effects.- 7.2.5 Orientation of Samples.- 7.2.6 Problems of Bistability Realization.- 7.3 Ferroelectric Liquid Crystal Polymers.- 7.3.1 Introductory Remarks.- 7.3.2 Chemical Structures.- 7.3.3 Ferroelectricity.- 7.3.4 Electrooptical Switching.- References.- 8 Applications of Electrooptical Liquid Crystalline Materials.- 8.1 Displays.- 8.1.1 Active Matrix Addressed Displays.- 8.1.2 Supertwist Displays for Personal Computers.- 8.1.3 Projection Displays.- 8.1.4 Guest-Host Large Area Information Boards.- 8.1.5 General Trends in Display Applications.- 8.2 Optical Data Processing Devices.- 8.2.1 Light Valves.- 8.2.2 Modulators, Shutters.- 8.2.3 Deflectors of Light.- 8.2.4 Integrated Optical Devices.- 8.2.5 Matrix Spatial Light Modulators or Controlled Transparencies.- 8.2.6 Liquid Crystal Logic Elements.- 8.2.7 Optical Filtration.- 8.2.8 Application of Polymer Liquid Crystals in Optoelectronics.- 8.3 Other Applications.- 8.3.1 Storage Devices.- 8.3.2 Stereoscopic Liquid Crystal Sytems.- 8.3.3 Nondestructive Testing.- 8.3.4 Large Area Glass Light Shutters on Polymer Dispersed Liquid Crystal Films.- References.

692 citations

Journal ArticleDOI
TL;DR: A technique for polarization sensitive optical frequency domain reflectometry (OFDR) that achieves 22 micrometer two-point spatial resolution over 35 meters of optical length with -97 dB sensitivity in a single measurement taking only seconds is described.
Abstract: We describe a technique for polarization sensitive optical frequency domain reflectometry (OFDR) that achieves 22 micrometer two-point spatial resolution over 35 meters of optical length with -97 dB sensitivity in a single measurement taking only seconds. We demonstrate OFDR’s versatility in both time- and frequency-domain metrology by analyzing a fiber Bragg grating (FBG) in both the spectral and impulse response domains. We also demonstrate how a polarization diversity receiver can be used in an OFDR system to track changes in the polarization state of light propagating through a birefringent component.

642 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
86% related
Laser
353.1K papers, 4.3M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Polymer
131.4K papers, 2.6M citations
84% related
Amorphous solid
117K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023483
20221,063
2021524
2020636
2019659
2018717