scispace - formally typeset
Search or ask a question
Topic

Bit error rate

About: Bit error rate is a research topic. Over the lifetime, 43142 publications have been published within this topic receiving 508173 citations. The topic is also known as: Bit error ratio & BER.


Papers
More filters
Journal ArticleDOI
TL;DR: An iterative decoding algorithm for any product code built using linear block codes based on soft-input/soft-output decoders for decoding the component codes so that near-optimum performance is obtained at each iteration.
Abstract: This paper describes an iterative decoding algorithm for any product code built using linear block codes. It is based on soft-input/soft-output decoders for decoding the component codes so that near-optimum performance is obtained at each iteration. This soft-input/soft-output decoder is a Chase decoder which delivers soft outputs instead of binary decisions. The soft output of the decoder is an estimation of the log-likelihood ratio (LLR) of the binary decisions given by the Chase decoder. The theoretical justifications of this algorithm are developed and the method used for computing the soft output is fully described. The iterative decoding of product codes is also known as the block turbo code (BTC) because the concept is quite similar to turbo codes based on iterative decoding of concatenated recursive convolutional codes. The performance of different Bose-Chaudhuri-Hocquenghem (BCH)-BTCs are given for the Gaussian and the Rayleigh channel. Performance on the Gaussian channel indicates that data transmission at 0.8 dB of Shannon's limit or more than 98% (R/C>0.98) of channel capacity can be achieved with high-code-rate BTC using only four iterations. For the Rayleigh channel, the slope of the bit-error rate (BER) curve is as steep as for the Gaussian channel without using channel state information.

970 citations

Journal ArticleDOI
TL;DR: This paper presents two extensions to the coded cooperation framework, which increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes and investigates the application of turbo codes to this framework.
Abstract: When mobiles cannot support multiple antennas due to size or other constraints, conventional space-time coding cannot be used to provide uplink transmit diversity. To address this limitation, the concept of cooperation diversity has been introduced, where mobiles achieve uplink transmit diversity by relaying each other's messages. A particularly powerful variation of this principle is coded cooperation. Instead of a simple repetition relay, coded cooperation partitions the codewords of each mobile and transmits portions of each codeword through independent fading channels. This paper presents two extensions to the coded cooperation framework. First, we increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes. We calculate bounds for the bit- and block-error rates to demonstrate the resulting gains. Second, since cooperative coding contains two code components, it is natural to apply turbo codes to this framework. We investigate the application of turbo codes in coded cooperation and demonstrate the resulting gains via error bounds and simulations.

956 citations

01 Jan 1983
TL;DR: Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed, and errors in these schemes are found to be low.
Abstract: ERROR DETECTION incorporated with automatic-repeatrequest (ARQ) is widely used for error control in data communications systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. This paper surveys various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes.

955 citations

Journal ArticleDOI
TL;DR: Space shift keying concepts are extended to incorporate channel coding, where in particular, they are considered a bit interleaved coded modulation (BICM) system using iterative decoding for both convolutional and turbo codes.
Abstract: In this paper, we present space shift keying (SSK) as a new modulation scheme, which is based on spatial modulation (SM) concepts. Fading is exploited for multiple-input multiple-output(MIMO) channels to provide better performance over conventional amplitude/phase modulation (APM) techniques. In SSK, it is the antenna index used during transmission that relays information, rather than the transmitted symbols themselves. This absence of symbol information eliminates the transceiver elements necessary for APM transmission and detection (such as coherent detectors). As well, the simplicity involved in modulation reduces the detection complexity compared to that of SM, while achieving almost identical performance gains. Throughout the paper, we illustrate SSK's strength by studying its interaction with the fading channel. We obtain tight upper bounds on bit error probability, and discuss SSK's performance under some non-ideal channel conditions (estimation error and spatial correlation). Analytical and simulation results show performance gains over APM systems (3 dB at a bit error rate of 10-5), making SSK an interesting candidate for future wireless applications. We then extend SSK concepts to incorporate channel coding, where in particular, we consider a bit interleaved coded modulation (BICM) system using iterative decoding for both convolutional and turbo codes. Capacity results are derived, and improvements over APM are illustrated (up to 1 bits/s/Hz), with performance gains of up to 5 dB.

932 citations

Journal ArticleDOI
TL;DR: In Part I a technique based on optical orthogonal codes was presented to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system and it was shown that using an optical hard-limiter would, in general, improve system performance.
Abstract: For pt.I see ibid., vol.37, no.8, p.824-33 (1989). In Part I a technique based on optical orthogonal codes was presented to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using an optical hard-limiter would, in general, improve system performance. >

925 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Wireless
133.4K papers, 1.9M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Fading
55.4K papers, 1M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023601
20221,440
20211,433
20201,901
20192,153
20182,095