scispace - formally typeset
Topic

Blisters

About: Blisters is a(n) research topic. Over the lifetime, 980 publication(s) have been published within this topic receiving 16229 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and it is demonstrated that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.
Abstract: Patients with pemphigus foliaceus (PF) have blisters on skin, but not mucous membranes, whereas patients with pemphigus vulgaris (PV) develop blisters on mucous membranes and/or skin. PF and PV blisters are due to loss of keratinocyte cell–cell adhesion in the superficial and deep epidermis, respectively. PF autoantibodies are directed against desmoglein (Dsg) 1; PV autoantibodies bind Dsg3 or both Dsg3 and Dsg1. In this study, we test the hypothesis that coexpression of Dsg1 and Dsg3 in keratinocytes protects against pathology due to antibody-induced dysfunction of either one alone. Using passive transfer of pemphigus IgG to normal and DSG3null neonatal mice, we show that in the areas of epidermis and mucous membrane that coexpress Dsg1 and Dsg3, antibodies against either desmoglein alone do not cause spontaneous blisters, but antibodies against both do. In areas (such as superficial epidermis of normal mice) where Dsg1 without Dsg3 is expressed, anti-Dsg1 antibodies alone can cause blisters. Thus, the anti-desmoglein antibody profiles in pemphigus sera and the normal tissue distributions of Dsg1 and Dsg3 determine the sites of blister formation. These studies suggest that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and demonstrate that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.

390 citations

Journal ArticleDOI
TL;DR: In this paper, the critical pitting potential is a linear function of the logarithm of the chloride concentration (at constant pH), in agreement with experiment, and the model also predicts that the critical pit potential is independent of pH.
Abstract: Corrosion pit initiation in chloride solutions is given by an electrode kinetic model which takes into account adsorption of chloride ions on the oxide surface, penetration of chloride ions through the oxide film, and localized dissolution of aluminum at the metal/oxide interface in consecutive one-electron transfer reactions. A previous model has been extended here to consider that penetration of chloride ions can occur by oxide film dissolution as well as by migration through oxygen vacancies. Pit initiation occurs by chloride-assisted localized dissolution at the oxide/metal interface. The electrode kinetic model leads to a mathematical expression which shows that the critical pitting potential is a linear function of the logarithm of the chloride concentration (at constant pH), in agreement with experiment. The model also predicts that the critical pitting potential is independent of pH (at constant chloride concentration), also in agreement with experiment. Corrosion pit propagation leads to formation of blisters beneath the oxide film due to localized reactions which produce an acidic localized environment. The blisters subsequently rupture due to the formation of hydrogen gas in the occluded corrosion cell. Calculation of the local pH within a blister from the calculated hydrogen pressure within the blister gives pH values in the range 0.85 to 2.3. Published by Elsevier Science Ltd.

289 citations

Journal ArticleDOI
TL;DR: Increasing skin hydration seems to cause gender-specific changes in the mechanical properties and/or surface topography of human skin, leading to skin softening and increased real contact area and adhesion.
Abstract: Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles. The friction between the inner forearm and a hospital fabric was measured in the natural skin condition and in different hydration states using a force plate. Eleven males and eleven females rubbed their forearm against the textile on the force plate using defined normal loads and friction movements. Skin hydration and viscoelasticity were assessed by corneometry and the suction chamber method, respectively. In each individual, a highly positive linear correlation was found between skin moisture and friction coefficient (COF). No correlation was observed between moisture and elasticity, as well as between elasticity and friction. Skin viscoelasticity was comparable for women and men. The friction of female skin showed significantly higher moisture sensitivity. COFs increased typically by 43% (women) and 26% (men) when skin hydration varied between very dry and normally moist skin. The COFs between skin and completely wet fabric were more than twofold higher than the values for natural skin rubbed on a dry textile surface. Increasing skin hydration seems to cause gender-specific changes in the mechanical properties and/or surface topography of human skin, leading to skin softening and increased real contact area and adhesion.

249 citations

Patent
07 Jan 2005
TL;DR: In this article, a system for achieving erythema and mild edema in an upper layer of skin, without causing blisters, and without the risk of high fluence levels or critical need for cooling, is presented.
Abstract: The present invention provides a system for achieving erythema and/or mild edema in an upper layer of skin, without causing blisters, and without the risk of high fluence levels or critical need for cooling.

243 citations

Book ChapterDOI
TL;DR: Ortiz and Gioia as discussed by the authors reviewed some recent developments based on the use of direct methods of the calculus of variations which have proven useful for understanding the mechanics of folding of thin films.
Abstract: In this article, we specifically concern ourselves with the buckling-driven delamination mechanism, whereby a portion of the film buckles away from the substrate, thereby forming a blister (also termed buckle or wrinkle). Blisters may grow by interfacial fracture, a process which, under the appropriate conditions, may result in the catastrophic failure of the component. Blisters are often observed to adopt convoluted-even bizarre shapes and to fold into intricate patterns. A principal objective of this article is to review some recent developments based on the use of direct methods of the calculus of variations which have proven useful for understanding the mechanics of folding of thin films (Ortiz and Gioia, 1994). These developments are reviewed in Section III, which is extracted from the original publication. The remaining sections are devoted to the application of these principles to the problem of predicting the shape of thin-film blisters.

241 citations

Network Information
Related Topics (5)
Ultraviolet light
49.4K papers, 843.1K citations
71% related
Dislocation
36.8K papers, 872.2K citations
69% related
Adhesion
28.8K papers, 801.9K citations
66% related
Scanning electron microscope
74.7K papers, 1.3M citations
66% related
Transmission electron microscopy
32.3K papers, 683.5K citations
65% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202118
202036
201922
201846
201738