scispace - formally typeset
Search or ask a question
Topic

Blisters

About: Blisters is a research topic. Over the lifetime, 980 publications have been published within this topic receiving 16229 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The retention of ion-implanted deuterium in beryllium poly-and single crystals at room temperature was studied using high precision temperature programmed desorption spectroscopy (TPD).
Abstract: The retention of ion-implanted deuterium in beryllium poly- and single crystals at room temperature is studied using high precision temperature programmed desorption spectroscopy (TPD). Slow temperature ramps of 0.01 K/s in combination with well-defined experimental conditions are used to resolve the low temperature desorption regime for the first time revealing three sharp desorption peaks. The comparison to results of a coupled reaction diffusion system (CRDS) model shows, that the corresponding release mechanisms cannot be described by thermally activated rate processes. SEM images of a polycrystalline beryllium sample after implantation of deuterium with 2 keV per D atom show the formation of blisters of roughly 1 µm in diameter. Additionally, cracks on top of the blisters are found as well as spots, on which blisters are peeled off. Both processes are discussed to play a role in the low temperature release regime of the retained deuterium. Investigation of TPD spectra performed on single crystalline beryllium shows a jagged pattern in the low temperature release regime, which can be connected to blisters bursting up, releasing big amounts of deuterium in short time scales.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the deuterium concentrations at the onset of blistering were found to be approximately constant over the temperature ranges 120 to 190 K and 190 to 300 K, although a different concentration was observed in each range.

11 citations

Journal ArticleDOI
TL;DR: In this paper, a continuum model is adopted combining a nonlinear plate theory for monolayer graphene with a non-linear traction-separation relation for van der Waals interactions.
Abstract: Blister tests are commonly used to determine the mechanical and interfacial properties of thin film materials with recent applications for graphene. This paper presents a numerical study on snap transitions of pressurized graphene blisters. A continuum model is adopted combining a nonlinear plate theory for monolayer graphene with a nonlinear traction–separation relation for van der Waals interactions. Three types of blister configurations are considered. For graphene bubble blisters, snap-through and snap-back transitions between pancake-like and dome-like shapes are predicted under pressurecontrolled conditions. For center-island graphene blisters, snap transitions between donut-like and dome-like shapes are predicted under both pressure and volume control. Finally, for the center-hole graphene blisters, growth is stable under volume or N-control but unstable under pressure control. With a finite hole depth, the growth may start with a snap transition under N-control if the hole is relatively deep. The numerical results provide a systematic understanding on the mechanics of graphene blisters, consistent with previously reported experiments. Of particular interest is the relationship between the van der Waals interactions and measurable quantities in corresponding blister tests, with which both the adhesion energy of graphene and the equilibrium separation for the van der Waals interactions may be determined. In comparison with approximate solutions based on membrane analyses, the numerical method offers more accurate solutions that may be used in conjunction with experiments for quantitative characterization of the interfacial properties of graphene and other two-dimensional (2D) membrane materials. [DOI: 10.1115/1.4033305]

11 citations

Journal ArticleDOI
TL;DR: In this article, a batch of notebook personal computer components was manufactured from AZ91D Mg alloy by precision die-casting, subsequent chemical conversion and organic coatings, and some blisters were found on some components.

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that the intra-granular hydrogen blisters are nucleated at the edge dislocation core and develop along the (100) plane in tungsten.

11 citations


Network Information
Related Topics (5)
Ultraviolet light
49.4K papers, 843.1K citations
71% related
Dislocation
36.8K papers, 872.2K citations
69% related
Adhesion
28.8K papers, 801.9K citations
66% related
Scanning electron microscope
74.7K papers, 1.3M citations
66% related
Transmission electron microscopy
32.3K papers, 683.5K citations
65% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202353
2022133
202118
202036
201922
201846