Topic

# Block cipher

About: Block cipher is a(n) research topic. Over the lifetime, 7267 publication(s) have been published within this topic receiving 163586 citation(s). The topic is also known as: block ciphers.

##### Papers published on a yearly basis

##### Papers

More filters

•

10 Nov 1993

TL;DR: This document describes the construction of protocols and their use in the real world, as well as some examples of protocols used in the virtual world.

Abstract: CRYPTOGRAPHIC PROTOCOLS. Protocol Building Blocks. Basic Protocols. Intermediate Protocols. Advanced Protocols. Esoteric Protocols. CRYPTOGRAPHIC TECHNIQUES. Key Length. Key Management. Algorithm Types and Modes. Using Algorithms. CRYPTOGRAPHIC ALGORITHMS. Data Encryption Standard (DES). Other Block Ciphers. Other Stream Ciphers and Real Random-Sequence Generators. Public-Key Algorithms. Special Algorithms for Protocols. THE REAL WORLD. Example Implementations. Politics. SOURCE CODE.source Code. References.

3,414 citations

•

14 Feb 2002

TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.

Abstract: 1. The Advanced Encryption Standard Process.- 2. Preliminaries.- 3. Specification of Rijndael.- 4. Implementation Aspects.- 5. Design Philosophy.- 6. The Data Encryption Standard.- 7. Correlation Matrices.- 8. Difference Propagation.- 9. The Wide Trail Strategy.- 10. Cryptanalysis.- 11. Related Block Ciphers.- Appendices.- A. Propagation Analysis in Galois Fields.- A.1.1 Difference Propagation.- A.l.2 Correlation.- A. 1.4 Functions that are Linear over GF(2).- A.2.1 Difference Propagation.- A.2.2 Correlation.- A.2.4 Functions that are Linear over GF(2).- A.3.3 Dual Bases.- A.4.2 Relationship Between Trace Patterns and Selection Patterns.- A.4.4 Illustration.- A.5 Rijndael-GF.- B. Trail Clustering.- B.1 Transformations with Maximum Branch Number.- B.2 Bounds for Two Rounds.- B.2.1 Difference Propagation.- B.2.2 Correlation.- B.3 Bounds for Four Rounds.- B.4 Two Case Studies.- B.4.1 Differential Trails.- B.4.2 Linear Trails.- C. Substitution Tables.- C.1 SRD.- C.2 Other Tables.- C.2.1 xtime.- C.2.2 Round Constants.- D. Test Vectors.- D.1 KeyExpansion.- D.2 Rijndael(128,128).- D.3 Other Block Lengths and Key Lengths.- E. Reference Code.

3,288 citations

••

14 May 2000TL;DR: This work describes the cryptographic schemes for the problem of searching on encrypted data and provides proofs of security for the resulting crypto systems, and presents simple, fast, and practical algorithms that are practical to use today.

Abstract: It is desirable to store data on data storage servers such as mail servers and file servers in encrypted form to reduce security and privacy risks. But this usually implies that one has to sacrifice functionality for security. For example, if a client wishes to retrieve only documents containing certain words, it was not previously known how to let the data storage server perform the search and answer the query, without loss of data confidentiality. We describe our cryptographic schemes for the problem of searching on encrypted data and provide proofs of security for the resulting crypto systems. Our techniques have a number of crucial advantages. They are provably secure: they provide provable secrecy for encryption, in the sense that the untrusted server cannot learn anything about the plaintext when only given the ciphertext; they provide query isolation for searches, meaning that the untrusted server cannot learn anything more about the plaintext than the search result; they provide controlled searching, so that the untrusted server cannot search for an arbitrary word without the user's authorization; they also support hidden queries, so that the user may ask the untrusted server to search for a secret word without revealing the word to the server. The algorithms presented are simple, fast (for a document of length n, the encryption and search algorithms only need O(n) stream cipher and block cipher operations), and introduce almost no space and communication overhead, and hence are practical to use today.

3,008 citations

••

02 Jan 1994TL;DR: A new method is introduced for cryptanalysis of DES cipher, which is essentially a known-plaintext attack, that is applicable to an only-ciphertext attack in certain situations.

Abstract: We introduce a new method for cryptanalysis of DES cipher, which is essentially a known-plaintext attack. As a result, it is possible to break 8-round DES cipher with 221 known-plaintexts and 16-round DES cipher with 247 known-plaintexts, respectively. Moreover, this method is applicable to an only-ciphertext attack in certain situations. For example, if plaintexts consist of natural English sentences represented by ASCII codes, 8-round DES cipher is breakable with 229 ciphertexts only.

2,526 citations

••

11 Aug 1990TL;DR: A new type of cryptanalytic attack is developed which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variantof DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts.

Abstract: The Data Encryption Standard (DES) is the best known and most widely used cryptosystem for civilian applications. It was developed at IBM and adopted by the National Bureau of Standards in the mid 1970s, and has successfully withstood all the attacks published so far in the open literature. In this paper we develop a new type of cryptanalytic attack which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variant of DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts. The new attack can be applied to a variety of DES-like substitution/permutation cryptosystems, and demonstrates the crucial role of the (unpublished) design rules.

2,148 citations