scispace - formally typeset
Search or ask a question
Topic

Blood cell

About: Blood cell is a research topic. Over the lifetime, 2886 publications have been published within this topic receiving 98152 citations. The topic is also known as: hematocyte & blood cells.


Papers
More filters
Journal ArticleDOI
11 Jun 1999-Science
TL;DR: Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge and are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
Abstract: Interferons (IFNs) are the most important cytokines in antiviral immune responses. “Natural IFN-producing cells” (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4+CD11c− type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.

2,328 citations

Journal ArticleDOI
11 Nov 2010-Nature
TL;DR: It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles.
Abstract: Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.

2,062 citations

Journal ArticleDOI
TL;DR: Large numbers of DC progenitors are observed in cord blood and in adult blood from healthy donors, which should facilitate future studies of their Fc epsilon RI and CD4 receptors, and their use in stimulating T cell-mediated resistance to viruses and tumors.
Abstract: CD34+ cells in human cord blood and marrow are known to give rise to dendritic cells (DC), as well as to other myeloid lineages. CD34+ cells are rare in adult blood, however, making it difficult to use CD34+ cells to ascertain if DC progenitors are present in the circulation and if blood can be a starting point to obtain large numbers of these immunostimulatory antigen-presenting cells for clinical studies. A systematic search for DC progenitors was therefore carried out in several contexts. In each case, we looked initially for the distinctive proliferating aggregates that were described previously in mice. In cord blood, it was only necessary to deplete erythroid progenitors, and add granulocyte/macrophage colony-stimulating factor (GM-CSF) together with tumor necrosis factor (TNF), to observe many aggregates and the production of typical DC progeny. In adult blood from patients receiving CSFs after chemotherapy for malignancy, GM-CSF and TNF likewise generated characteristic DCs from HLA-DR negative precursors. However, in adult blood from healthy donors, the above approaches only generated small DC aggregates which then seemed to become monocytes. When interleukin 4 was used to suppress monocyte development (Jansen, J. H., G.-J. H. M. Wientjens, W. E. Fibbe, R. Willemze, and H. C. Kluin-Nelemans. 1989. J. Exp. Med. 170:577.), the addition of GM-CSF led to the formation of large proliferating DC aggregates and within 5-7 d, many nonproliferating progeny, about 3-8 million cells per 40 ml of blood. The progeny had a characteristic morphology and surface composition (e.g., abundant HLA-DR and accessory molecules for cell-mediated immunity) and were potent stimulators of quiescent T cells. Therefore, large numbers of DCs can be mobilized by specific cytokines from progenitors in the blood stream. These relatively large numbers of DC progeny should facilitate future studies of their Fc epsilon RI and CD4 receptors, and their use in stimulating T cell-mediated resistance to viruses and tumors.

1,993 citations

Journal ArticleDOI
30 Nov 2001-Science
TL;DR: It is demonstrated that HSCs rapidly and constitutively migrate through the blood and play a physiological role in, at least, the functional reengraftment of unconditioned bone marrow.
Abstract: Hematopoietic stem cells (HSCs) reside predominantly in bone marrow, but low numbers of HSCs are also found in peripheral blood. We examined the fate of blood-borne HSCs using genetically marked parabiotic mice, which are surgically conjoined and share a common circulation. Parabionts rapidly established stable, functional cross engraftment of partner-derived HSCs and maintained partner-derived hematopoiesis after surgical separation. Determination of the residence time of injected blood-borne progenitor cells suggests that circulating HSCs/progenitors are cleared quickly from the blood. These data demonstrate that HSCs rapidly and constitutively migrate through the blood and play a physiological role in, at least, the functional reengraftment of unconditioned bone marrow.

941 citations

Journal ArticleDOI
25 Jul 2012-PLOS ONE
TL;DR: In healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages, indicating that whole blood methylation results might be unintelligible.
Abstract: Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the “missing heritability”. The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered.

932 citations


Network Information
Related Topics (5)
Antigen
170.2K papers, 6.9M citations
83% related
Cell culture
133.3K papers, 5.3M citations
82% related
Immune system
182.8K papers, 7.9M citations
82% related
Stem cell
129.1K papers, 5.9M citations
81% related
T cell
109.5K papers, 5.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202326
202247
202166
202067
201971
201864