scispace - formally typeset
Search or ask a question
Topic

Blood vessel

About: Blood vessel is a research topic. Over the lifetime, 7119 publications have been published within this topic receiving 337863 citations. The topic is also known as: edder & blood vessels.


Papers
More filters
Journal ArticleDOI
TL;DR: Molecular mechanisms of factors related to the EPR effect, the unique anatomy of tumor vessels, limitations and techniques to avoid such limitations, augmenting tumor drug delivery, and experimental and clinical findings are discussed.

3,034 citations

Journal ArticleDOI
TL;DR: The present review will focus on the relationship of diabetes mellitus and atherosclerotic vascular disease, highlighting pathophysiology and molecular mechanisms (Part I) and clinical manifestations and management strategies (Part II).
Abstract: Diabetes mellitus affects approximately 100 million persons worldwide.1 Five to ten percent have type 1 (formerly known as insulin-dependent) and 90% to 95% have type 2 (non–insulin-dependent) diabetes mellitus. It is likely that the incidence of type 2 diabetes will rise as a consequence of lifestyle patterns contributing to obesity.2 Cardiovascular physicians are encountering many of these patients because vascular diseases are the principal causes of death and disability in people with diabetes. The macrovascular manifestations include atherosclerosis and medial calcification. The microvascular consequences, retinopathy and nephropathy, are major causes of blindness and end-stage renal failure. Physicians must be cognizant of the salient features of diabetic vascular disease in order to treat these patients most effectively. The present review will focus on the relationship of diabetes mellitus and atherosclerotic vascular disease, highlighting pathophysiology and molecular mechanisms (Part I) and clinical manifestations and management strategies (Part II). Abnormalities in endothelial and vascular smooth muscle cell function, as well as a propensity to thrombosis, contribute to atherosclerosis and its complications. Endothelial cells, because of their strategic anatomic position between the circulating blood and the vessel wall, regulate vascular function and structure. In normal endothelial cells, biologically active substances are synthesized and released to maintain vascular homeostasis, ensuring adequate blood flow and nutrient delivery while preventing thrombosis and leukocyte diapedesis.3 Among the important molecules synthesized by the endothelial cell is nitric oxide (NO), which is constitutively produced by endothelial NO synthase (eNOS) through a 5-electron oxidation of the guanidine-nitrogen terminal of l-arginine.4 The bioavailability of NO represents a key marker in vascular health. NO causes vasodilation by activating guanylyl cyclase on subjacent vascular smooth muscle cells.4 In addition, NO protects the blood vessel from endogenous injury—ie, atherosclerosis—by mediating molecular signals that prevent platelet and leukocyte interaction with …

1,924 citations

Journal ArticleDOI
TL;DR: Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels as mentioned in this paper.
Abstract: Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels. Relaxation results from release of a very labile non-prostanoid endothelium-derived relaxing factor (EDRF) or factors. EDRF stimulates guanylate cyclase of the vascular smooth muscle, with the resulting increase in cyclic GMP activating relaxation. EDRF is rapidly inactivated by hemoglobin and superoxide. There is strong evidence that EDRF from many blood vessels and from cultured endothelial cells is nitric oxide (NO) and that its precursor is L-arginine. There is evidence for other relaxing factors, including an endothelium-derived hyperpolarizing factor in some vessels. Flow-induced shear stress also stimulates EDRF release. Endothelium-dependent relaxation occurs in resistance vessels as well as in larger arteries, and is generally more pronounced in arteries than veins. EDRF also inhibits platelet aggregation and adhesion to the blood vessel wall. Endothelium-derived contracting factors appear to be responsible for endothelium-dependent contractions produced by arachidonic acid and hypoxia in isolated systemic vessels and by certain agents and by rapid stretch in isolated cerebral vessels. In all such experiments, the endothelium-derived contracting factor appears to be some product or by-product of cyclooxygenase activity. Recently, endothelial cells in culture have been found to synthesize a peptide, endothelin, which is an extremely potent vasoconstrictor. The possible physiological roles and pathophysiological significance of endothelium-derived relaxing and contracting factors are briefly discussed.

1,868 citations

Journal ArticleDOI
16 Apr 1999-Science
TL;DR: A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue, with patency documented up to 24 days by digital angiography.
Abstract: A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.

1,801 citations

Journal ArticleDOI
03 Aug 2007-Science
TL;DR: It is shown, by direct examination of blood monocyte functions in vivo, that a subset of monocytes patrols healthy tissues through long-range crawling on the resting endothelium, which initiated an early immune response and differentiated into macrophages.
Abstract: The cellular immune response to tissue damage and infection requires the recruitment of blood leukocytes. This process is mediated through a classical multistep mechanism, which involves transient rolling on the endothelium and recognition of inflammation followed by extravasation. We have shown, by direct examination of blood monocyte functions in vivo, that a subset of monocytes patrols healthy tissues through long-range crawling on the resting endothelium. This patrolling behavior depended on the integrin LFA-1 and the chemokine receptor CX(3)CR1 and was required for rapid tissue invasion at the site of an infection by this "resident" monocyte population, which initiated an early immune response and differentiated into macrophages.

1,790 citations


Network Information
Related Topics (5)
Inflammation
76.4K papers, 4M citations
87% related
Blood pressure
139.2K papers, 4.2M citations
86% related
Receptor
159.3K papers, 8.2M citations
84% related
Apoptosis
115.4K papers, 4.8M citations
83% related
Programmed cell death
60.5K papers, 3.8M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202291
2021111
2020134
2019127
2018129