scispace - formally typeset
Search or ask a question
Topic

Boost converter

About: Boost converter is a research topic. Over the lifetime, 35014 publications have been published within this topic receiving 491778 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A converter consisting of two interleaved and intercoupled boost converter cells is proposed and investigated, which has very good current sharing characteristics even in the presence of relatively large duty cycle mismatch.
Abstract: Boost converters are widely used as power-factor corrected preregulators In high-power applications, interleaved operation of two or more boost converters has been proposed to increase the output power and to reduce the output ripple A major design criterion then is to ensure equal current sharing among the parallel converters In this paper, a converter consisting of two interleaved and intercoupled boost converter cells is proposed and investigated The boost converter cells have very good current sharing characteristics even in the presence of relatively large duty cycle mismatch In addition, it can be designed to have small input current ripple and zero boost-rectifier reverse-recovery loss The operating principle, steady-state analysis, and comparison with the conventional boost converter are presented Simulation and experimental results are also given

570 citations

Journal ArticleDOI
TL;DR: In this article, a high step-up converter with a coupled-inductive switch is investigated, where a passive regenerative snubber is utilized for absorbing the energy of stray inductance so that the switch duty cycle can be operated under a wide range, and the related voltage gain is higher than other coupled inductor-based converters.
Abstract: In this study, a high step-up converter with a coupled-inductor is investigated. In the proposed strategy, a coupled inductor with a lower-voltage-rated switch is used for raising the voltage gain (whether the switch is turned on or turned off). Moreover, a passive regenerative snubber is utilized for absorbing the energy of stray inductance so that the switch duty cycle can be operated under a wide range, and the related voltage gain is higher than other coupled-inductor-based converters. In addition, all devices in this scheme also have voltage-clamped properties and their voltage stresses are relatively smaller than the output voltage. Thus, it can select low-voltage low-conduction-loss devices, and there are no reverse-recovery currents within the diodes in this circuit. Furthermore, the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage drift problem of the power source under the load variations. As a result, the proposed converter topology can promote the voltage gain of a conventional boost converter with a single inductor, and deal with the problem of the leakage inductor and demagnetization of transformer for a coupled-inductor-based converter. Some experimental results via examples of a proton exchange membrane fuel cell (PEMFC) power source and a traditional battery are given to demonstrate the effectiveness of the proposed power conversion strategy.

540 citations

Journal ArticleDOI
TL;DR: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this article, where the measured absolute error between the sensed signal and the inductor current is less than 4%.
Abstract: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.

513 citations

Journal ArticleDOI
TL;DR: A new three-phase three-switch three-level pulsewidth modulated (PWM) rectifier system is developed that can be characterized by sinusoidal mains current consumption, controlled output voltage, and low-blocking voltage stress on the power transistors.
Abstract: Based on the combination of a three-phase diode bridge and a DC/DC boost converter, a new three-phase three-switch three-level pulsewidth modulated (PWM) rectifier system is developed. It can be characterized by sinusoidal mains current consumption, controlled output voltage, and low-blocking voltage stress on the power transistors. The application could be, e.g., for feeding the DC link of a telecommunications power supply module. The stationary operational behavior, the control of the mains currents, and the control of the output voltage are analyzed. Finally, the stresses on the system components are determined by digital simulation and compared to the stresses in a conventional six-switch two-level PWM rectifier system.

509 citations

Journal ArticleDOI
TL;DR: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system, and a common knowledge basis of the individual converterTopologies is established.
Abstract: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system. Starting from the voltage source inverter and the current source rectifier, the basics of space vector modulation are summarized. Based on that, the topology of the indirect matrix converter (IMC) and its modulation are gradually developed from a voltage dc-link back-to-back converter by omitting the dc-link capacitor. In the next step, the topology of the conventional (direct) matrix converter (CMC) is introduced, and the relationship between the IMC and the CMCs is discussed in a figurative manner by investigating the switching states. Subsequently, three-phase ac-ac buck-type chopper circuits are considered as a special case of matrix converters (MCs), and a summary of extended MC topologies is provided, including three-level and hybrid MCs. Therewith, a common knowledge basis of the individual converter topologies is established.

489 citations


Network Information
Related Topics (5)
AC power
80.9K papers, 880.8K citations
93% related
Stator
112.5K papers, 814.8K citations
90% related
Capacitor
166.6K papers, 1.4M citations
88% related
Voltage
296.3K papers, 1.7M citations
88% related
Electric power system
133K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023472
20221,071
2021852
20201,223
20191,343
20181,536