scispace - formally typeset
Search or ask a question
Topic

Boosting (machine learning)

About: Boosting (machine learning) is a research topic. Over the lifetime, 9461 publications have been published within this topic receiving 384177 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees.
Abstract: An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Schapire, 1996; Schapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier - especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees.

2,672 citations

Journal ArticleDOI
Robi Polikar1
TL;DR: Conditions under which ensemble based systems may be more beneficial than their single classifier counterparts are reviewed, algorithms for generating individual components of the ensemble systems, and various procedures through which the individual classifiers can be combined are reviewed.
Abstract: In matters of great importance that have financial, medical, social, or other implications, we often seek a second opinion before making a decision, sometimes a third, and sometimes many more. In doing so, we weigh the individual opinions, and combine them through some thought process to reach a final decision that is presumably the most informed one. The process of consulting "several experts" before making a final decision is perhaps second nature to us; yet, the extensive benefits of such a process in automated decision making applications have only recently been discovered by computational intelligence community. Also known under various other names, such as multiple classifier systems, committee of classifiers, or mixture of experts, ensemble based systems have shown to produce favorable results compared to those of single-expert systems for a broad range of applications and under a variety of scenarios. Design, implementation and application of such systems are the main topics of this article. Specifically, this paper reviews conditions under which ensemble based systems may be more beneficial than their single classifier counterparts, algorithms for generating individual components of the ensemble systems, and various procedures through which the individual classifiers can be combined. We discuss popular ensemble based algorithms, such as bagging, boosting, AdaBoost, stacked generalization, and hierarchical mixture of experts; as well as commonly used combination rules, including algebraic combination of outputs, voting based techniques, behavior knowledge space, and decision templates. Finally, we look at current and future research directions for novel applications of ensemble systems. Such applications include incremental learning, data fusion, feature selection, learning with missing features, confidence estimation, and error correcting output codes; all areas in which ensemble systems have shown great promise

2,628 citations

Journal ArticleDOI
TL;DR: The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in theTop-20, respectively).
Abstract: We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large-scale problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel implemented in C using LibSVM, which achieves 92.3% of the maximum accuracy. A few models are clearly better than the remaining ones: random forest, SVM with Gaussian and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet (a committee of multi-layer perceptrons implemented in R with the caret package). The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in the top-20, respectively).

2,616 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is shown how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions.
Abstract: This paper addresses the problem of Face Alignment for a single image. We show how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions. We present a general framework based on gradient boosting for learning an ensemble of regression trees that optimizes the sum of square error loss and naturally handles missing or partially labelled data. We show how using appropriate priors exploiting the structure of image data helps with efficient feature selection. Different regularization strategies and its importance to combat overfitting are also investigated. In addition, we analyse the effect of the quantity of training data on the accuracy of the predictions and explore the effect of data augmentation using synthesized data.

2,545 citations

Proceedings Article
08 Jul 1997
TL;DR: In this paper, the authors show that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero.
Abstract: One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show that techniques used in the analysis of Vapnik's support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins of the training examples. Finally, we compare our explanation to those based on the bias-variance

2,423 citations


Network Information
Related Topics (5)
Deep learning
79.8K papers, 2.1M citations
87% related
Artificial neural network
207K papers, 4.5M citations
83% related
Cluster analysis
146.5K papers, 2.9M citations
83% related
Convolutional neural network
74.7K papers, 2M citations
83% related
Feature extraction
111.8K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20242
20232,004
20223,558
2021945
2020865