scispace - formally typeset
Search or ask a question
Topic

Boundary value problem

About: Boundary value problem is a research topic. Over the lifetime, 145355 publications have been published within this topic receiving 2731135 citations. The topic is also known as: boundary value problems.


Papers
More filters
Book
31 Dec 1959
TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Abstract: This classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems.

21,807 citations

Journal ArticleDOI
Abstract: Maxwell's equations are replaced by a set of finite difference equations. It is shown that if one chooses the field points appropriately, the set of finite difference equations is applicable for a boundary condition involving perfectly conducting surfaces. An example is given of the scattering of an electromagnetic pulse by a perfectly conducting cylinder.

14,070 citations

Book
01 Jan 2002
TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.
Abstract: Preface 1. Introduction 2. Conservation laws and differential equations 3. Characteristics and Riemann problems for linear hyperbolic equations 4. Finite-volume methods 5. Introduction to the CLAWPACK software 6. High resolution methods 7. Boundary conditions and ghost cells 8. Convergence, accuracy, and stability 9. Variable-coefficient linear equations 10. Other approaches to high resolution 11. Nonlinear scalar conservation laws 12. Finite-volume methods for nonlinear scalar conservation laws 13. Nonlinear systems of conservation laws 14. Gas dynamics and the Euler equations 15. Finite-volume methods for nonlinear systems 16. Some nonclassical hyperbolic problems 17. Source terms and balance laws 18. Multidimensional hyperbolic problems 19. Multidimensional numerical methods 20. Multidimensional scalar equations 21. Multidimensional systems 22. Elastic waves 23. Finite-volume methods on quadrilateral grids Bibliography Index.

5,791 citations

Book
19 Jun 1986
TL;DR: This paper presents the results of an analysis of the "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions and its applications to Mixed Approximation and Homogeneous Stokes Equations.
Abstract: I. Mathematical Foundation of the Stokes Problem.- 1. Generalities on Some Elliptic Boundary Value Problems.- 1.1. Basic Concepts on Sobolev Spaces.- 1.2. Abstract Elliptic Theory.- 1.3. Example 1: Dirichlet's Problem for the Laplace Operator.- 1.4. Example 2: Neumann's Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- s Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- 2. Theory of the Steady-State Navier-Stokes Equations.- 2.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 2.2. The Stream Function Formulation of the Homogeneous Problem..- 3. Approximation of Branches of Nonsingular Solutions.- 3.1. An Abstract Framework.- 3.2. Approximation of Branches of Nonsingular Solutions.- 3.3. Application to a Class of Nonlinear Problems.- 3.4. Non-Differentiable Approximation of Branches of Nonsingular Solutions.- 4. Numerical Analysis of Centered Finite Element Schemes.- 4.1. Formulation in Primitive Variables: Methods Using Discontinuous Pressures.- 4.2. Formulation in Primitive Variables: the Case of Continuous Pressures.- 4.3. Mixed Incompressible Methods: the "Stream Function-Vorticity" Formulation.- 4.4. Remarks on the "Stream Function-Gradient of Velocity Tensor" Scheme.- 5. Numerical Analysis of Upwind Schemes.- 5.1. Upwinding in the Stream Function-Vorticity Scheme.- 5.2. Error Analysis of the Upwind Scheme.- 5.3. Approximating the Pressure with the Upwind Scheme.- 6. Numerical Algorithms.- 2.11. General Methods of Descent and Application to Gradient Methods.- 2.12. Least-Squares and Gradient Methods to Solve the Navier-Stokes Equations.- 2.13. Newton's Method and the Continuation Method.- References.- Index of Mathematical Symbols.

5,572 citations

Book
01 Apr 1985
TL;DR: Second-order boundary value problems in polygons have been studied in this article for convex domains, where the second order boundary value problem can be solved in the Sobolev spaces of Holder functions.
Abstract: Foreword Preface 1. Sobolev spaces 2. Regular second-order elliptic boundary value problems 3. Second-order elliptic boundary value problems in convex domains 4. Second-order boundary value problems in polygons 5. More singular solutions 6. Results in spaces of Holder functions 7. A model fourth-order problem 8. Miscellaneous Bibliography Index.

5,248 citations


Network Information
Related Topics (5)
Differential equation
88K papers, 2M citations
95% related
Numerical analysis
52.2K papers, 1.2M citations
95% related
Partial differential equation
70.8K papers, 1.6M citations
94% related
Nonlinear system
208.1K papers, 4M citations
91% related
Matrix (mathematics)
105.5K papers, 1.9M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,295
20225,228
20215,327
20205,483
20195,439