scispace - formally typeset
Search or ask a question

Showing papers on "Boundary value problem published in 2006"


Book
01 Jan 2006
TL;DR: The Finite Volume Method for Diffusion Problems as mentioned in this paper is a finite volume method for convection-diffusion problems with boundary conditions, and it has been applied in a variety of applications.
Abstract: *Introduction. *Conservation Laws of Fluid Motion and Boundary Conditions. *Turbulence and its Modelling. *The Finite Volume Method for Diffusion Problems. *The Finite Volume Method for Convection-Diffusion Problems. *Solution Algorithms for Pressure-Velocity Coupling in Steady Flows. *Solution of Discretised Equations. *The Finite Volume Method for Unsteady Flows. *Implementation of Boundary Conditions. *Advanced topics and applications. Appendices. References. Index.

2,016 citations


Journal ArticleDOI
TL;DR: In this paper, the electronic states of narrow graphene ribbons with zigzag and armchair edges were analyzed using the Dirac equation with appropriate boundary conditions, showing that the boundary condition allows a particlelike and a hole-like band with evanescent wave functions confined to the surfaces, which continuously turn into zero energy surface states as the width gets large.
Abstract: We study the electronic states of narrow graphene ribbons (``nanoribbons'') with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particlelike and a holelike band with evanescent wave functions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units has the form $3M+1$, with $M$ an integer, and insulating otherwise. A comparison of the wave functions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.

1,244 citations


Journal ArticleDOI
Ji-Huan He1
TL;DR: Wazwaz et al. as mentioned in this paper applied homotopy perturbation method to nonlinear boundary value problems and compared the result obtained by the present method with that obtained by Adomian method.

1,112 citations


Journal ArticleDOI
TL;DR: A. P. Calderon as discussed by the authors published by the Brazilian Mathematical Society (SBM) in ATAS of SBM (Rio de Janeiro), pp. 65-73, 1980.
Abstract: This paper is a reprint of the original work by A. P. Calderon published by the Brazilian Mathematical Society (SBM) in ATAS of SBM (Rio de Janeiro), pp. 65-73, 1980. The original paper had no abstract, so this reprint to be truthful to the original work is published with no abstract.

1,096 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider a magnetic Schrodinger operator L W, q in R n and show how to recover the boundary values of the tangential component of the vector potential W from the Dirichlet to Neumann map.
Abstract: Let Ω be a domain in R n whose boundary is C 1 if n≥3 or C 1,β if n=2. We consider a magnetic Schrodinger operator L W , q in Ω and show how to recover the boundary values of the tangential component of the vector potential W from the Dirichlet to Neumann map for L W , q . We also consider a steady state heat equation with convection term Δ+2W·∇ and recover the boundary values of the convection term W from the Dirichlet to Neumann map. Our method is constructive and gives a stability result at the boundary.

655 citations


Journal ArticleDOI
TL;DR: Outflow boundary conditions are derived for any downstream domain where an explicit relationship of pressure as a function of flow rate or velocities can be obtained at the coupling interface.

652 citations


Journal ArticleDOI
TL;DR: In this article, a pseudopotential plane-wave scheme is modified at the Poisson solver part with the help of the Green's function technique to screen the excess surface charge.
Abstract: A new first-principles computational approach to a charged surface/interface is presented. The surface is modeled as a slab imposed with boundary conditions to screen the excess surface charge. To treat this model, which is nonperiodic in the surface normal direction, a standard pseudopotential plane-wave scheme is modified at the Poisson solver part with the help of the Green's function technique. Benchmark calculations are done for $\mathrm{Al}∕\mathrm{Si}(111)$ with the bias voltage applied between the surface and the model scanning tunneling microscopy (STM) tip, the model back gate, or the model solution. The calculations are found to be efficient and stable, and their implementation is found to be easy. Because of the flexibility, the scheme is considered to be applicable to more general experimental situations.

551 citations


Journal ArticleDOI
TL;DR: A non-boundary-conforming formulation for simulating complex turbulent flows with dynamically moving boundaries on fixed Cartesian grids is proposed and the concept of field-extension is also introduced to treat the points emerging from a moving solid body to the fluid.

537 citations


Journal ArticleDOI
TL;DR: In this article, a new model is proposed that is open with respect to particles, magnetic flux, and electromagnetic radiation to examine undriven reconnection in a neutral sheet initialized with a single x-point.
Abstract: Kinetic simulations of magnetic reconnection typically employ periodic boundary conditions that limit the duration in which the results are physically meaningful. To address this issue, a new model is proposed that is open with respect to particles, magnetic flux, and electromagnetic radiation. The model is used to examine undriven reconnection in a neutral sheet initialized with a single x-point. While at early times the results are in excellent agreement with previous periodic studies, the evolution over longer intervals is entirely different. In particular, the length of the electron diffusion region is observed to increase with time resulting in the formation of an extended electron current sheet. As a consequence, the electron diffusion region forms a bottleneck and the reconnection rate is substantially reduced. Periodically, the electron layer becomes unstable and produces a secondary island, breaking the diffusion region into two shorter segments. After growing for some period, the island is ejected and the diffusion region again expands until a new island is formed. Fast reconnection may still be possible provided that the generation of secondary islands remains sufficiently robust. These results indicate that reconnection in a neutral sheet may be inherently unsteady and raise serious questions regarding the standard model of Hall mediated reconnection.

515 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed a new method to simulate blood flow in 3D deformable models of arteries, which couples the equations of the deformation of the vessel wall at the variational level as a boundary condition for the fluid domain.

496 citations


Journal ArticleDOI
TL;DR: This paper considers the wave equation with a delayed velocity term and mixed Dirichlet-Neumann boundary condition and proves exponential stability of the solution under suitable assumptions.
Abstract: In this paper we consider, in a bounded and smooth domain, the wave equation with a delay term in the boundary condition. We also consider the wave equation with a delayed velocity term and mixed Dirichlet-Neumann boundary condition. In both cases, under suitable assumptions, we prove exponential stability of the solution. These results are obtained by introducing suitable energies and by using some observability inequalities. If one of the above assumptions is not satisfied, some instability results are also given by constructing some sequences of delays for which the energy of some solutions does not tend to zero.

Journal ArticleDOI
TL;DR: In this paper, the Yang index and critical groups were used to obtain nontrivial solutions of a class of nonlocal quasilinear elliptic boundary value problems with respect to critical groups.

Journal ArticleDOI
TL;DR: In this article, the transmission coefficients and the density of states of biased and unbiased Si and GaAs nanowires are simulated using the $s{p}^{3d}^{5}{s}^{*}$ empirical tight-binding method.
Abstract: As the active dimensions of metal-oxide field-effect transistors are approaching the atomic scale, the electronic properties of these ``nanowire'' devices must be treated on a quantum mechanical level. In this paper, the transmission coefficients and the density of states of biased and unbiased Si and GaAs nanowires are simulated using the $s{p}^{3}{d}^{5}{s}^{*}$ empirical tight-binding method. Each atom, as well as the connections to its nearest neighbors, is represented explicitly. The material parameters are optimized to reproduce bulk band-structure characteristics in various crystal directions and various strain conditions. A scattering boundary method to calculate the open boundary conditions in nanowire transistors is developed to reduce the computational burden. Existing methods such as iterative or generalized eigenvalue problem approaches are significantly more expensive than the transport simulation through the device. The algorithm can be coupled to nonequilibrium Green's function and wave function transport calculations. The speed improvement is even larger if the wire transport direction is different from [100]. Finally, it is demonstrated that strain effects can be easily included in the present nanowire simulations.

Journal ArticleDOI
TL;DR: Several finite difference schemes are discussed for solving the two-dimensional Schrodinger equation with Dirichlet's boundary conditions with the unique advantage of the Barakat and Clark technique, which is unconditionally stable and is explicit in nature.

Journal ArticleDOI
TL;DR: In this paper, sign changing solutions of nonlocal quasilinear elliptic boundary value problems using variational methods and invariant sets of descent flow were obtained for the first time.

Journal ArticleDOI
TL;DR: In this paper, the authors compare six algorithms for the computation of nonlinear force-free (NLFF) magnetic fields (including optimization, magnetofrictional, Grad-Rubin based, and Green's function-based methods).
Abstract: We compare six algorithms for the computation of nonlinear force-free (NLFF) magnetic fields (including optimization, magnetofrictional, Grad-Rubin based, and Green's function-based methods) by evaluating their performance in blind tests on analytical force-free-field models for which boundary conditions are specified either for the entire surface area of a cubic volume or for an extended lower boundary only. Figures of merit are used to compare the input vector field to the resulting model fields. Based on these merit functions, we argue that all algorithms yield NLFF fields that agree best with the input field in the lower central region of the volume, where the field and electrical currents are strongest and the effects of boundary conditions weakest. The NLFF vector fields in the outer domains of the volume depend sensitively on the details of the specified boundary conditions; best agreement is found if the field outside of the model volume is incorporated as part of the model boundary, either as potential field boundaries on the side and top surfaces, or as a potential field in a skirt around the main volume of interest. For input field (B) and modeled field (b), the best method included in our study yields an average relative vector error En =� |B− b|� /�| B|� of only 0.02 when all sides are specified and 0.14 for the case where only the lower boundary is specified, while

Book
01 Jan 2006
TL;DR: 1D PROBLEMS 1D Model Elliptic Problem A Two-Point Boundary Value Problem Algebraic Structure of the Variational Formulation Equivalence with a Minimization Problem Sobolev Space H1(0, l) Well Posedness of theVariational BVP Examples from Mechanics and Physics
Abstract: 1D PROBLEMS 1D Model Elliptic Problem A Two-Point Boundary Value Problem Algebraic Structure of the Variational Formulation Equivalence with a Minimization Problem Sobolev Space H1(0, l) Well Posedness of the Variational BVP Examples from Mechanics and Physics The Case with "Pure Neumann" BCs Exercises Galerkin Method Finite Dimensional Approximation of the VBVP Elementary Convergence Analysis Comments Exercises 1D hp Finite Element Method 1D hp Discretization Assembling Element Matrices into Global Matrices Computing the Element Matrices Accounting for the Dirichlet BC Summary Assignment 1: A Dry Run Exercises 1D hp Code Setting up the 1D hp Code Fundamentals Graphics Element Routine Assignment 2: Writing Your Own Processor Exercises Mesh Refinements in 1D The h-Extension Operator. Constrained Approximation Coefficients Projection-Based Interpolation in 1D Supporting Mesh Refinements Data-Structure-Supporting Routines Programming Bells and Whistles Interpolation Error Estimates Convergence Assignment 3: Studying Convergence Definition of a Finite Element Exercises Automatic hp Adaptivity in 1D The hp Algorithm Supporting the Optimal Mesh Selection Exponential Convergence. Comparing with h Adaptivity Discussion of the hp Algorithm Algebraic Complexity and Reliability of the Algorithm Exercises Wave Propagation Problems Convergence Analysis for Noncoercive Problems Wave Propagation Problems Asymptotic Optimality of the Galerkin Method Dispersion Error Analysis Exercises 2D ELLIPTIC PROBLEMS 2D Elliptic Boundary-Value Problem Classical Formulation Variational (Weak) Formulation Algebraic Structure of the Variational Formulation Equivalence with a Minimization Problem Examples from Mechanics and Physics Exercises Sobolev Spaces Sobolev Space H1(O) Sobolev Spaces of an Arbitrary Order Density and Embedding Theorems Trace Theorem Well Posedness of the Variational BVP Exercises 2D hp Finite Element Method on Regular Meshes Quadrilateral Master Element Triangular Master Element Parametric Element Finite Element Space. Construction of Basis Functions Calculation of Element Matrices Modified Element. Imposing Dirichlet Boundary Conditions Postprocessing- Local Access to Element d.o.f Projection-Based Interpolation Exercises 2D hp Code Getting Started Data Structure in FORTRAN 90 Fundamentals The Element Routine Modified Element. Imposing Dirichlet Boundary Conditions Assignment 4: Assembly of Global Matrices The Case with "Pure Neumann" Boundary Conditions Geometric Modeling and Mesh Generation Manifold Representation Construction of Compatible Parametrizations Implicit Parametrization of a Rectangle Input File Preparation Initial Mesh Generation The hp Finite Element Method on h-Refined Meshes Introduction. The h Refinements 1-Irregular Mesh Refinement Algorithm Data Structure in Fortran 90 (Continued) Constrained Approximation for C0 Discretizations Reconstructing Element Nodal Connectivities Determining Neighbors for Midedge Nodes Additional Comments Automatic hp Adaptivity in 2D The Main Idea The 2D hp Algorithm Example: L-Shape Domain Problem Example: 2D "Shock" Problem Additional Remarks Examples of Applications A "Battery Problem" Linear Elasticity An Axisymmetric Maxwell Problem Exercises Exterior Boundary-Value Problems Variational Formulation. Infinite Element Discretization Selection of IE Radial Shape Functions Implementation Calculation of Echo Area Numerical Experiments Comments Exercises 2D MAXWELL PROBLEMS 2D Maxwell Equations Introduction to Maxwell's Equation Variational Formulation Exercises Edge Elements and the de Rham Diagram Exact Sequences Projection-Based Interpolation De Rham Diagram Shape Functions Exercises 2D Maxwell Code Directories. Data Structure The Element Routine Constrained Approximation. Modified Element Setting up a Maxwell Problem Exercises hp Adaptivity for Maxwell Equations Projection-Based Interpolation Revisited The hp Mesh Optimization Algorithm Example: The Screen Problem Exterior Maxwell Boundary-Value Problems Variational Formulation Infinite Element Discretization in 3D Infinite Element Discretization in 2D Stability Implementation Numerical Experiments Exercises A Quick Summary and Outlook Appendix Bibliography Index

Journal ArticleDOI
TL;DR: In this article, a variational derivation of the generalized Navier boundary condition (GNBC) was proposed to solve the problem of incompatibility between the moving contact line and the no-slip boundary condition, which leads to a nonintegrable singularity.
Abstract: In immiscible two-phase flows, the contact line denotes the intersection of the fluid–fluid interface with the solid wall. When one fluid displaces the other, the contact line moves along the wall. A classical problem in continuum hydrodynamics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a non-integrable singularity. The recently discovered generalized Navier boundary condition (GNBC) offers an alternative to the no-slip boundary condition which can resolve the moving contact line conundrum. We present a variational derivation of the GNBC through the principle of minimum energy dissipation (entropy production), as formulated by Onsager for small perturbations away from equilibrium. Through numerical implementation of a continuum hydrodynamic model, it is demonstrated that the GNBC can quantitatively reproduce the moving contact line slip velocity profiles obtained from molecular dynamics simulations. In particular, the transition from complete slip at the moving contact line to near-zero slip far away is shown to be governed by a power-law partial-slip regime, extending to mesoscopic length scales. The sharp (fluid–fluid) interface limit of the hydrodynamic model, together with some general implications of slip versus no slip, are discussed.

Journal ArticleDOI
TL;DR: In this article, a momentum exchange-based immersed boundary-lattice Boltzmann method is presented for simulating incompressible viscous flows, which combines the good features of the LBM and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian meshes for the solid boundaries in the flow.

Journal ArticleDOI
TL;DR: A simple explicit local version of the classical meshless radial basis function collocation (Kansa) method, structured on multiquadrics radial basis functions, which outperforms the classical finite difference method in terms of accuracy.
Abstract: This paper formulates a simple explicit local version of the classical meshless radial basis function collocation (Kansa) method. The formulation copes with the diffusion equation, applicable in the solution of a broad spectrum of scientific and engineering problems. The method is structured on multiquadrics radial basis functions. Instead of global, the collocation is made locally over a set of overlapping domains of influence and the time-stepping is performed in an explicit way. Only small systems of linear equations with the dimension of the number of nodes included in the domain of influence have to be solved for each node. The computational effort thus grows roughly linearly with the number of the nodes. The developed approach thus overcomes the principal large-scale problem bottleneck of the original Kansa method. Two test cases are elaborated. The first is the boundary value problem (NAFEMS test) associated with the steady temperature field with simultaneous involvement of the Dirichlet, Neumann and Robin boundary conditions on a rectangle. The second is the initial value problem, associated with the Dirichlet jump problem on a square. The accuracy of the method is assessed in terms of the average and maximum errors with respect to the density of nodes, number of nodes in the domain of influence, multiquadrics free parameter, and timestep length on uniform and nonuniform node arrangements. The developed meshless method outperforms the classical finite difference method in terms of accuracy in all situations except immediately after the Dirichlet jump where the approximation properties appear similar.

Journal ArticleDOI
TL;DR: In this article, the relation between the interior and the surface dynamics for nonlinear baroclinically unstable flows is examined using the concepts of potential vorticity, and the dynamics are decomposed in terms of a solution forced by the three-dimensional (3D) potential Vorticity and a solution forcing by the surface boundary condition in density.
Abstract: In this study, the relation between the interior and the surface dynamics for nonlinear baroclinically unstable flows is examined using the concepts of potential vorticity. First, it is demonstrated that baroclinic unstable flows present the property that the potential vorticity mesoscale and submesoscale anomalies in the ocean interior are strongly correlated to the surface density anomalies. Then, using the invertibility of potential vorticity, the dynamics are decomposed in terms of a solution forced by the three-dimensional (3D) potential vorticity and a solution forced by the surface boundary condition in density. It is found that, in the upper oceanic layers, the balanced flow induced only by potential vorticity is strongly anticorrelated with that induced only by the surface density with a dominance of the latter. The major consequence is that the 3D balanced motions can be determined from only the surface density and the characteristics of the basin-scale stratification by solving an elliptic equation. These properties allow for the possibility to reconstruct the 3D balanced velocity field of the upper layers from just the knowledge of the surface density by using a simpler model, that is, an “effective” surface quasigeostrophic model. All these results are validated through the examination of a primitive equation simulation reproducing the dynamics of the Antarctic Circumpolar Current.

Journal ArticleDOI
01 Jul 2006
TL;DR: To make Poisson image editing more practical and easy to use, a new objective function is proposed to compute an optimized boundary condition and a shortest closed-path algorithm is designed to search for the location of the boundary.
Abstract: In this paper, we present a user-friendly system for seamless image composition, which we call drag-and-drop pasting. We observe that for Poisson image editing [Perez et al. 2003] to work well, the user must carefully draw a boundary on the source image to indicate the region of interest, such that salient structures in source and target images do not conflict with each other along the boundary. To make Poisson image editing more practical and easy to use, we propose a new objective function to compute an optimized boundary condition. A shortest closed-path algorithm is designed to search for the location of the boundary. Moreover, to faithfully preserve the object's fractional boundary, we construct a blended guidance field to incorporate the object's alpha matte. To use our system, the user needs only to simply outline a region of interest in the source image, and then drag and drop it onto the target image. Experimental results demonstrate the effectiveness of our "drag-and-drop pasting" system.

Journal ArticleDOI
TL;DR: In this paper, a numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed.

Journal ArticleDOI
TL;DR: In this article, the existence of global-in-time weak solutions to the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behaviour of the magnetic field was proved.
Abstract: We prove existence of global-in-time weak solutions to the equations of magnetohydrodynamics, specifically, the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behaviour of the magnetic field. The result applies to any finite energy data posed on a bounded spatial domain in R3, supplemented with conservative boundary conditions.

Journal ArticleDOI
TL;DR: It is concluded that the simplified spherical harmonics methods can accurately model light propagation in small tissue geometries at visible and near-infrared wavelengths, yielding transport-like solutions with only a fraction of the computational cost of the transport calculation.

Journal ArticleDOI
TL;DR: In this paper, a new representation of the Einstein evolution equations is presented that is first order, linearly degenerate and symmetric hyperbolic, and exponentially suppresses all small short-wavelength constraint violations.
Abstract: A new representation of the Einstein evolution equations is presented that is first order, linearly degenerate and symmetric hyperbolic. This new system uses the generalized harmonic method to specify the coordinates, and exponentially suppresses all small short-wavelength constraint violations. Physical and constraint-preserving boundary conditions are derived for this system, and numerical tests that demonstrate the effectiveness of the constraint suppression properties and the constraint-preserving boundary conditions are presented.

Journal ArticleDOI
TL;DR: In this paper, a new methodology is proposed for the topology optimization of fluid in Stokes flow, where the binary design variable and no-slip condition along the solid-fluid interface are regularized to allow for the use of continuous mathematical programming techniques.
Abstract: A new methodology is proposed for the topology optimization of fluid in Stokes flow. The binary design variable and no-slip condition along the solid–fluid interface are regularized to allow for the use of continuous mathematical programming techniques. The regularization is achieved by treating the solid phase of the topology as a porous medium with flow governed by Darcy's law. Fluid flow throughout the design domain is then expressed as a single system of equations created by combining and scaling the Stokes and Darcy equations. The mixed formulation of the new Darcy–Stokes system is solved numerically using existing stabilized finite element methods for the individual flow problems. Convergence to the no-slip condition is demonstrated by assigning a low permeability to solid phase and results suggest that auxiliary boundary conditions along the solid–fluid interface are not needed. The optimization objective considered is to minimize dissipated power and the technique is used to solve examples previously examined in literature. The advantages of the Darcy–Stokes approach include that it uses existing stabilization techniques to solve the finite element problem, it produces 0–1 (void–solid) topologies (i.e. there are no regions of artificial material), and that it can potentially be used to optimize the layout of a microscopically porous material. Copyright © 2005 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, a 1-way grid embedding capability has been integrated into the Regional Oceanic Modeling System (ROMS), taking advantage of the AGRIF (Adaptive Grid Refinement in Fortran) Fortran 90 package based on the use of pointers.

Journal Article
TL;DR: In this article, a matrix transfer technique (MTT) was proposed for solving the space fractional diception equation (SFDE) with non-homogeneous boundary conditions on a bounded domain.
Abstract: In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.

Journal ArticleDOI
TL;DR: A mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid and an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, theLiquid-solid, and the gas-solid phases is presented.
Abstract: We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the dependency of the contact angle on the two free parameters of the model, which determine the interaction between the fluid and the boundaries, i.e. the equivalent of the wall density and of the wall-fluid potential in molecular dynamics studies. We compare the analytical results obtained in the hydrodynamical limit for the density profile and for the surface tension expression with the numerical simulations. We compare also our two-phase approach with some exact results obtained by E. Lauga and H. Stone [J. Fluid. Mech. 489, 55 (2003)] and J. Philip [Z. Angew. Math. Phys. 23, 960 (1972)] for a pure hydrodynamical incompressible fluid based on Navier-Stokes equations with boundary conditions made up of alternating slip and no-slip strips. Finally, we show how to overcome some theoretical limitations connected with the discretized Boltzmann scheme proposed by X. Shan and H. Chen [Phys. Rev. E 49, 2941 (1994)] and we discuss the equivalence between the surface tension defined in terms of the mechanical equilibrium and in terms of the Maxwell construction.