scispace - formally typeset
Search or ask a question
Topic

Bounded function

About: Bounded function is a research topic. Over the lifetime, 77295 publications have been published within this topic receiving 1321552 citations.


Papers
More filters
Book
01 Jan 2000
TL;DR: The Mumford-Shah functional minimiser of free continuity problems as mentioned in this paper is a special function of the Mumfordshah functional and has been shown to be a function of free discontinuity set.
Abstract: Measure Theory Basic Geometric Measure Theory Functions of bounded variation Special functions of bounded variation Semicontinuity in BV The Mumford-Shah functional Minimisers of free continuity problems Regularity of the free discontinuity set References Index

4,299 citations

Journal ArticleDOI
TL;DR: In this paper, a characterization of compact sets in Lp (0, T; B) is given, where 1⩽P⩾∞ and B is a Banach space.
Abstract: A characterization of compact sets in Lp (0, T; B) is given, where 1⩽P⩾∞ and B is a Banach space. For the existence of solutions in nonlinear boundary value problems by the compactness method, the point is to obtain compactness in a space Lp (0,T; B) from estimates with values in some spaces X, Y or B where X⊂B⊂Y with compact imbedding X→B. Using the present characterization for this kind of situations, sufficient conditions for compactness are given with optimal parameters. As an example, it is proved that if {fn} is bounded in Lq(0,T; B) and in L loc 1 (0, T; X) and if {∂fn/∂t} is bounded in L loc 1 (0, T; Y) then {fn} is relatively compact in Lp(0,T; B), ∀p

3,681 citations

Book
19 Nov 2010
TL;DR: In this article, the Corona construction was used to construct Douglas algebra and interpolating sequences and Maximal Ideals were used to solve a set of problems in the Corona Construction.
Abstract: Preliminaries.- Hp Spaces.- Conjugate Functions.- Some Extremal Problems.- Some Uniform Algebra.- Bounded Mean Oscillation.- Interpolating Sequences.- The Corona Construction.- Douglas Algebras.- Interpolating Sequences and Maximal Ideals.

3,585 citations

Proceedings ArticleDOI
03 Nov 1982
TL;DR: This paper describes three ways of solving the millionaires’ problem by use of one-way functions (i.e., functions which are easy to evaluate but hard to invert) and discusses the complexity question “How many bits need to be exchanged for the computation”.
Abstract: Two millionaires wish to know who is richer; however, they do not want to find out inadvertently any additional information about each other’s wealth. How can they carry out such a conversation? This is a special case of the following general problem. Suppose m people wish to compute the value of a function f(x1, x2, x3, . . . , xm), which is an integer-valued function of m integer variables xi of bounded range. Assume initially person Pi knows the value of xi and no other x’s. Is it possible for them to compute the value of f , by communicating among themselves, without unduly giving away any information about the values of their own variables? The millionaires’ problem corresponds to the case when m = 2 and f(x1, x2) = 1 if x1 < x2, and 0 otherwise. In this paper, we will give precise formulation of this general problem and describe three ways of solving it by use of one-way functions (i.e., functions which are easy to evaluate but hard to invert). These results have applications to secret voting, private querying of database, oblivious negotiation, playing mental poker, etc. We will also discuss the complexity question “How many bits need to be exchanged for the computation”, and describe methods to prevent participants from cheating. Finally, we study the question “What cannot be accomplished with one-way functions”. Before describing these results, we would like to put this work in perspective by first considering a unified view of secure computation in the next section.

3,510 citations

Journal ArticleDOI
TL;DR: In this paper, a general theory of dissipative dynamical systems is presented, where dissipativeness is defined in terms of an inequality involving the storage function and the supply function, which is bounded from below by the available storage and from above by the required supply.
Abstract: The first part of this two-part paper presents a general theory of dissipative dynamical systems. The mathematical model used is a state space model and dissipativeness is defined in terms of an inequality involving the storage function and the supply function. It is shown that the storage function satisfies an a priori inequality: it is bounded from below by the available storage and from above by the required supply. The available storage is the amount of internal storage which may be recovered from the system and the required supply is the amount of supply which has to be delivered to the system in order to transfer it from the state of minimum storage to a given state. These functions are themselves possible storage functions, i.e., they satisfy the dissipation inequality. Moreover, since the class of possible storage functions forms a convex set, there is thus a continuum of possible storage functions ranging from its lower bound, the available storage, to its upper bound, the required supply. The paper then considers interconnected systems. It is shown that dissipative systems which are interconnected via a neutral interconnection constraint define a new dissipative dynamical system and that the sum of the storage functions of the individual subsystems is a storage function for the interconnected system. The stability of dissipative systems is then investigated and it is shown that a point in the state space where the storage function attains a local minimum defines a stable equilibrium and that the storage function is a Lyapunov function for this equilibrium. These results are then applied to several examples. These concepts and results will be applied to linear dynamical systems with quadratic supply rates in the second part of this paper.

3,124 citations


Network Information
Related Topics (5)
Dynamical systems theory
37.1K papers, 1M citations
92% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
91% related
Upper and lower bounds
56.9K papers, 1.1M citations
91% related
Differential equation
88K papers, 2M citations
91% related
Partial differential equation
70.8K papers, 1.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20234,319
20229,421
20214,210
20204,423
20194,004