scispace - formally typeset
Search or ask a question
Topic

Bounding overwatch

About: Bounding overwatch is a research topic. Over the lifetime, 966 publications have been published within this topic receiving 15156 citations.


Papers
More filters
Book ChapterDOI
18 Jul 2021
TL;DR: In this article, the synthesis problem is specified by an input reference (recursive) function and a recursion skeleton, and the goal is to synthesize a recursive function equivalent to the input function whose recursion strategy is specified.
Abstract: Quantifier bounding is a standard approach in inductive program synthesis in dealing with unbounded domains. In this paper, we propose one such bounding method for the synthesis of recursive functions over recursive input data types. The synthesis problem is specified by an input reference (recursive) function and a recursion skeleton. The goal is to synthesize a recursive function equivalent to the input function whose recursion strategy is specified by the recursion skeleton. In this context, we illustrate that it is possible to selectively bound a subset of the (recursively typed) parameters, each by a suitable bound. The choices are guided by counterexamples. The evaluation of our strategy on a broad set of benchmarks shows that it succeeds in efficiently synthesizing non-trivial recursive functions where standard across-the-board bounding would fail.

5 citations

Journal ArticleDOI
TL;DR: In this article , an explainable global dual heuristic programming (XGDHP) technique is proposed to solve the problem of asymmetric input constraints for nonlinear discrete-time systems.

5 citations

Journal ArticleDOI
01 Feb 2022
TL;DR: In this article , the expressive power of piecewise linear neural networks (PLNNs) is analyzed by counting and bounding the number of linear regions, which is a natural measure of their expressive power.
Abstract: Deep neural networks (DNNs) are shown to be excellent solutions to staggering and sophisticated problems in machine learning. A key reason for their success is due to the strong expressive power of function representation. For piecewise linear neural networks (PLNNs), the number of linear regions is a natural measure of their expressive power since it characterizes the number of linear pieces available to model complex patterns. In this article, we theoretically analyze the expressive power of PLNNs by counting and bounding the number of linear regions. We first refine the existing upper and lower bounds on the number of linear regions of PLNNs with rectified linear units (ReLU PLNNs). Next, we extend the analysis to PLNNs with general piecewise linear (PWL) activation functions and derive the exact maximum number of linear regions of single-layer PLNNs. Moreover, the upper and lower bounds on the number of linear regions of multilayer PLNNs are obtained, both of which scale polynomially with the number of neurons at each layer and pieces of PWL activation function but exponentially with the number of layers. This key property enables deep PLNNs with complex activation functions to outperform their shallow counterparts when computing highly complex and structured functions, which, to some extent, explains the performance improvement of deep PLNNs in classification and function fitting.

5 citations

01 Jun 2015
TL;DR: A bounding volume is a common method to simplify object representation by using the composition of geometrical shapes that enclose the object; it encapsulates complex objects by means of simple volumes and it is widely useful in collision detection applications and ray tracing for rendering algorithms.
Abstract: A bounding volume is a common method to simplify object representation by using the composition of geometrical shapes that enclose the object; it encapsulates complex objects by means of simple volumes and it is widely useful in collision detection applications and ray tracing for rendering algorithms They are popular in computer graphics and computational geometry Most popular bounding volumes are spheres, Oriented-Bounding Boxes (OBB's), Axis-Aligned Bounding Boxes (AABB's); moreover, the literature review includes ellipsoids, cylinders, sphere packing, sphere shells, k-DOP's, convex hulls, cloud of points, and minimal bounding boxes, among others A Bounding Volume Hierarchy is usually a tree in which the complete object is represented tighter fitting every level of the hierarchy Additionally, each bounding volume has a cost associated to construction, update, and interference tests For instance, spheres are invariant to rotation and translations, then they do not require being updated; their constructions and interference tests are more straightforward then OBB's; however, their tightness is lower than other bounding volumes Finally, three comparisons between two polyhedra; seven different algorithms were used, of which five are public libraries for collision detection

5 citations


Network Information
Related Topics (5)
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
82% related
Nonlinear system
208.1K papers, 4M citations
81% related
Artificial neural network
207K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023714
20221,629
2021155
202075
201973
201850