scispace - formally typeset
Search or ask a question
Topic

Bounding overwatch

About: Bounding overwatch is a research topic. Over the lifetime, 966 publications have been published within this topic receiving 15156 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the problem of bounding CFT correlators on the Euclidean section was formulated as an optimization problem, and functionals numerically were constructed to determine upper and lower bounds on correlators under several circumstances.
Abstract: A bstract We consider the problem of bounding CFT correlators on the Euclidean section. By reformulating the question as an optimization problem, we construct functionals numerically which determine upper and lower bounds on correlators under several circumstances. A useful outcome of our analysis is that the gap maximization bootstrap problem can be reproduced by a numerically easier optimization problem. We find that the 3d Ising spin correlator takes the minimal possible allowed values on the Euclidean section. Turning to the maximization problem we find that for d > 2 there are gap-independent maximal bounds on CFT correlators. Under certain conditions we show that the maximizing correlator is given by the generalized free boson for general Euclidean kinematics. In our explorations we also uncover an intriguing 3d CFT which saturates gap, OPE maximization and correlator value bounds. Finally we comment on the relation between our functionals and the Polyakov bootstrap.

3 citations

Proceedings ArticleDOI
23 May 2022
TL;DR: In this paper , a single-stage, keypoint-based approach for category-level object pose estimation is proposed, which performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative bounding cuboid dimensions.
Abstract: Prior work on 6-DoF object pose estimation has largely focused on instance-level processing, in which a textured CAD model is available for each object being detected. Category-level 6- DoF pose estimation represents an important step toward developing robotic vision systems that operate in unstructured, real-world scenarios. In this work, we propose a single-stage, keypoint-based approach for category-level object pose estimation that operates on unknown object instances within a known category using a single RGB image as input. The proposed network performs 2D object detection, detects 2D keypoints, estimates 6- DoF pose, and regresses relative bounding cuboid dimensions. These quantities are estimated in a sequential fashion, leveraging the recent idea of convGRU for propagating information from easier tasks to those that are more difficult. We favor simplicity in our design choices: generic cuboid vertex coordinates, single-stage network, and monocular RGB input. We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric (27.6% higher than the MobilePose single-stage approach and 7.1 % higher than the related two-stage approach).

3 citations

Journal ArticleDOI
TL;DR: The effectiveness of the proposed method in obtaining tight upper bounds for American style option prices in a variety of market models and with various payoff structures, such as the multivariate Black Scholes and Heston stochastic volatility models and the American put and butterfly payoff structures are demonstrated.
Abstract: We introduce a new approach for systematically obtaining smooth deterministic upper bounds for the price function of American style options. These bounding functions are characterized by sufficient...

3 citations

Posted Content
TL;DR: Zhang et al. as mentioned in this paper explore to group existing categories of high visual and semantic similarities together as one super category (or, a superclass) and study how this knowledge of hierarchical categories can be exploited to better detect object using multi-grained RCNN top branches.
Abstract: Training an accurate object detector is expensive and time-consuming. One main reason lies in the laborious labeling process, i.e., annotating category and bounding box information for all instances in every image. In this paper, we examine ways to improve performance of deep object detectors without extra labeling. We first explore to group existing categories of high visual and semantic similarities together as one super category (or, a superclass). Then, we study how this knowledge of hierarchical categories can be exploited to better detect object using multi-grained RCNN top branches. Experimental results on DeepFashion2 and OpenImagesV4-Clothing reveal that the proposed detection heads with multi-grained branches can boost the overall performance by 2.3 mAP for DeepFashion2 and 2.5 mAP for OpenImagesV4-Clothing with no additional time-consuming annotations. More importantly, classes that have fewer training samples tend to benefit more from the proposed multi-grained heads with superclass grouping. In particular, we improve the mAP for last 30% categories (in terms of training sample number) by 2.6 and 4.6 for DeepFashion2 and OpenImagesV4-Clothing, respectively.

3 citations


Network Information
Related Topics (5)
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
82% related
Nonlinear system
208.1K papers, 4M citations
81% related
Artificial neural network
207K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023714
20221,629
2021155
202075
201973
201850