scispace - formally typeset
Search or ask a question
Topic

Brillouin scattering

About: Brillouin scattering is a research topic. Over the lifetime, 11426 publications have been published within this topic receiving 178306 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a generalized Green's function is found that describes the impulse response for stimulated scattering by electron and ion modes in a coherent electromagnetic plane wave propagating in a uniform plasma.
Abstract: Stimulated Brillouin scattering, filamentation, and induced Thomson scattering are studied for a coherent electromagnetic plane wave propagating in a uniform plasma. A generalized Green’s function is found that describes the impulse response for stimulated scattering by electron and ion modes. Explicit asymptotic Green’s functions are calculated for those parametric instabilities involving ion modes or quasi‐modes. Special attention is given to whether the instabilities are convective or absolute. For a traveling wave pump in a uniform plasma, Brillouin and induced Thomson backscatter can be absolute, but sidescatter is convective; filamentation of traveling waves is always convective. Spatial growth rates are calculated for convectively unstable modes. Finally, the competition of filamentation and stimulated Brillouin scattering is considered for parameters typical of real laser‐fusion experiments.

79 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the characteristics of different types of SBS materials, SBS applications, experimental design methods, as well as the parameter optimization method is provided, which is expected to provide reference and guidance to SBS related experiments.

79 citations

Journal ArticleDOI
TL;DR: In this article, a novel dark-pulse-based technique has been used for the first time in a Brillouin scattering-based distributed fiber sensor, which is capable of strain and temperature measurement as conventional pulse-based systems but at much higher spatial resolution.
Abstract: A novel dark-pulse-based technique has been used for the first time in a Brillouin scattering-based distributed fiber sensor. Experimentally obtained Brillouin spectra demonstrate that the dark-pulse configuration is as capable of strain and temperature measurement as conventional pulse-based systems but at much higher spatial resolution. A spatial resolution of 50 mm is reported with a strain measurement accuracy of 6 /spl mu//spl epsiv/ on a 100-m sensing fiber.

79 citations

Journal ArticleDOI
TL;DR: In this paper, a Brillouin pulse is defined and is shown to possess near optimal (if not optimal) penetration into a given Debye-type dielectric for remote sensing.
Abstract: When an ultrawide-band electromagnetic pulse penetrates into a causally dispersive dielectric, the interrelated effects of phase dispersion and frequency dependent attenuation alter the pulse in a fundamental way that results in the appearance of so-called precursor fields. For a Debye-type dielectric, the dynamical field evolution is dominated by the Brillouin precursor as the propagation depth typically exceeds a single penetration depth at the carrier frequency of the input pulse. This is because the peak amplitude in the Brillouin precursor decays only as the square root of the inverse of the propagation distance. This nonexponential decay of the Brillouin precursor makes it ideally suited for remote sensing. Of equal importance is the frequency structure of the Brillouin precursor. Although the instantaneous oscillation frequency is zero at the peak amplitude point of the Brillouin precursor, the actual oscillation frequency of this field structure is quite different, exhibiting a complicated dependence on both the material dispersion and the input pulse characteristics. Finally, a Brillouin pulse is defined and is shown to possess near optimal (if not optimal) penetration into a given Debye-type dielectric.

79 citations

Journal ArticleDOI
TL;DR: In this paper, the authors theoretically and experimentally analyze the operation of Brillouin optical correlation-domain reflectometry (BOCDR) and demonstrate that the modulation amplitude of the laser frequency can be further enhanced by employing a sensing fiber shorter than a half of the measurement range.
Abstract: We theoretically and experimentally analyze the operation of Brillouin optical correlation-domain reflectometry (BOCDR). First, we experimentally confirm that BOCDR is not based on stimulated Brillouin scattering but on spontaneous Brillouin scattering. Then, we theoretically prove that the spatial resolution of BOCDR is given well by the same expression as that of Brillouin optical correlation-domain analysis (BOCDA). Finally, we demonstrate that the modulation amplitude of the laser frequency, which has been conventionally limited to a half of the Brillouin frequency shift, can be enhanced further by employing a sensing fiber shorter than a half of the measurement range.

79 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
91% related
Laser
353.1K papers, 4.3M citations
88% related
Electric field
87.1K papers, 1.4M citations
86% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Dielectric
169.7K papers, 2.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023237
2022471
2021289
2020342
2019433
2018404