scispace - formally typeset
Search or ask a question
Topic

Brillouin zone

About: Brillouin zone is a research topic. Over the lifetime, 13849 publications have been published within this topic receiving 383077 citations.


Papers
More filters
Journal ArticleDOI
01 Feb 2006-Carbon
TL;DR: In this paper, the structural and electronic properties of bulk graphite were compared using density functional theory calculations with the local density (LDA) and generalized gradient (GGA) approximations to determine the relative ability of each to model this material.

187 citations

Journal ArticleDOI
TL;DR: In this paper, the authors follow an analytic approach to characterize the non-reciprocal behavior of the structures by analyzing the symmetry breaking of the dispersion spectrum, which results in the formation of directional band gaps and produces shifts of the first Brillouin zone limits.
Abstract: We study longitudinal and transverse wave propagation in beams with elastic properties that are periodically varying in space and time. Spatiotemporal modulation of the elastic properties breaks mechanical reciprocity and induces one-way propagation. We follow an analytic approach to characterize the non-reciprocal behavior of the structures by analyzing the symmetry breaking of the dispersion spectrum, which results in the formation of directional band gaps and produces shifts of the first Brillouin zone limits. This approach allows us to relate position and width of the directional band gaps to the modulation parameters. Moreover, we identify the critical values of the modulation speed to maximize the non-reciprocal effect. We numerically verify the theoretical predictions by using a finite element model of the modulated beams to compute the transient response of the structure. We compute the two-dimensional Fourier transform of the collected displacement fields to calculate numerical band diagrams, showing excellent agreement between theoretical and numerical dispersion diagrams.

187 citations

Journal ArticleDOI
TL;DR: A study of laser mode pulling by the Brillouin optical gain spectrum is presented, and high-order, cascaded operation of the SBL is demonstrated, and potential application of these devices to microwave sources and phase-coherent communication is discussed.
Abstract: Recently, a high efficiency, narrow-linewidth, chip-based stimulated Brillouin laser (SBL) was demonstrated using an ultra-high-Q, silica-on-silicon resonator. In this work, this novel laser is more fully characterized. The Schawlow Townes linewidth formula for Brillouin laser operation is derived and compared to linewidth data, and the fitting is used to measure the mechanical thermal quanta contribution to the Brillouin laser linewidth. A study of laser mode pulling by the Brillouin optical gain spectrum is also presented, and high-order, cascaded operation of the SBL is demonstrated. Potential application of these devices to microwave sources and phase-coherent communication is discussed.

187 citations

Journal ArticleDOI
TL;DR: In this paper, the spin filtering properties of spin-injection interfaces between transition metals and semiconductors have been investigated and it was shown that spin filtering is quite insensitive to amounts of interface roughness and disorder.
Abstract: The in-plane lattice constants of close-packed planes of fcc and hcp Ni and Co match that of graphite almost perfectly so that they share a common two-dimensional reciprocal space. Their electronic structures are such that they overlap in this reciprocal space for one spin direction only allowing us to predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. First-principles calculations of the scattering matrix show that the spin filtering is quite insensitive to amounts of interface roughness and disorder which drastically influence the spin-filtering properties of conventional magnetic tunnel junctions or interfaces between transition metals and semiconductors. When a single graphene sheet is adsorbed on these open d-shell transition-metal surfaces, its characteristic electronic structure, with topological singularities at the K points in the two-dimensional Brillouin zone, is destroyed by the chemical bonding. Because graphene bonds only weakly to Cu which has no states at the Fermi energy at the K point for either spin, the electronic structure of graphene can be restored by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin-injection property.

187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present results obtained for excitons, polaritons and biexcitons in semiconductors with conduction band minimum and valence band maximum at the same point of the Brillouin zone (direct-gap materials) and a band to band transition which is dipole allowed.

186 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Magnetization
107.8K papers, 1.9M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023430
2022957
2021463
2020543
2019568
2018587