scispace - formally typeset
Search or ask a question
Topic

Brillouin zone

About: Brillouin zone is a research topic. Over the lifetime, 13849 publications have been published within this topic receiving 383077 citations.


Papers
More filters
Journal ArticleDOI
29 Apr 2019
TL;DR: In this article, a weak coupling approach to the superconductivity in twisted bilayer graphene, starting from the Fermi liquid regime, was developed. And the selection of spin-singlet or spin triplet orders, both for the IVCW and the superconductor, arise fcase corresponds to the Hundsrom SO(4) symmetry breaking terms.
Abstract: The recent discovery of the Mott insulating and superconducting phases in twisted bilayer graphene has generated tremendous research interest. Here, we develop a weak coupling approach to the superconductivity in twisted bilayer graphene, starting from the Fermi liquid regime. A key observation is that near half filling, the fermiology consists of well nested Fermi pockets derived from opposite valleys, leading to enhanced valley fluctuation, which in turn can mediate superconductivity. This scenario is studied within the random phase approximation. We find that inter-valley electron pairing with either chiral (d + id mixed with p−ip) or helical form factor is the dominant instability. An approximate SO(4) spin-valley symmetry implies a near degeneracy of spin-singlet and triplet pairing. On increasing interactions, commensurate inter-valley coherence wave (IVCW) order can arise, with simultaneous condensation at the three M points in the Brillouin Zone, and a 2 × 2 pattern in real space. In simple treatments though, this leads to a full gap at fillings ± (1/2 + 1/8), slightly away from half-filling. The selection of spin-singlet or spin triplet orders, both for the IVCW and the superconductor, arise fcase corresponds to the Hundsrom SO(4) symmetry breaking terms. Mott insulators derived from phase fluctuating superconductors are also discussed, which exhibit both symmetry protected and intrinsic topological orders.

162 citations

Journal ArticleDOI
TL;DR: Comparing phonon properties of filled and empty clathrates, it is shown that rattlers cause tenfold reductions in the relaxation time of phonons by increasing the phonon-phonon scattering probability.
Abstract: We investigate the role of rattling guest atoms on the lattice thermal conductivity of a type-I clathrate ${\mathrm{Ba}}_{8}{\mathrm{Ga}}_{16}{\mathrm{Ge}}_{30}$ by first-principles lattice dynamics. Comparing phonon properties of filled and empty clathrates, we show that rattlers cause tenfold reductions in the relaxation time of phonons by increasing the phonon-phonon scattering probability. Contrary to the resonant scattering scenario, the reduction in the relaxation time occurs in a wide frequency range, which is crucial for explaining the unusually low thermal conductivities of clathrates. We also find that the impact of rattlers on the group velocity of phonons is secondary because the flattening of phonon dispersion occurs only in a limited phase space in the Brillouin zone.

162 citations

Journal ArticleDOI
TL;DR: In this article, the difference in phase of two counter-propagating spin waves excited by the same microwave microstrip transducer was investigated using space-, time-, and phase-resolved Brillouin light-scattering spectroscopy.
Abstract: Using space-, time-, and phase-resolved Brillouin light-scattering spectroscopy we investigate the difference in phase of the two counterpropagating spin waves excited by the same microwave microstrip transducer. These studies are performed both for backward volume magnetostatic waves and magnetostatic surface waves in an in-plane magnetized yttrium iron garnet film. The experiments show that for the backward volume magnetostatic spin waves which are reciprocal and excited symmetrically in amplitude there is a phase difference of associated with the excitation process and thus the phase symmetry is distorted. On the contrary, for the magnetostatic surface spin waves which are nonreciprocal and unsymmetrical in amplitude the phase symmetry is preserved there is no phase difference between the two waves associated with the excitation. Theoretical analysis confirms this effect.

161 citations

Journal ArticleDOI
TL;DR: This work demonstrates real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique and discusses some drawbacks of this ultrahigh-speed configuration, including the reduced measurement accuracy, lowered spatial resolution and limited strain dynamic range.
Abstract: Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements. However, real-time distributed strain measurement has been achieved only for two-end-access systems; such systems reduce the degree of freedom in embedding the sensors into structures, and furthermore render the measurement no longer feasible when extremely high loss or breakage occurs at a point along the sensing fibre. Here, we demonstrate real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique. In this method, the Brillouin gain spectrum is obtained at high speed using a voltage-controlled oscillator, and the Brillouin frequency shift is converted into a phase delay of a synchronous sinusoidal waveform; the phase delay is subsequently converted into a voltage, which can be directly measured. When a single-point measurement is performed at an arbitrary position, a strain sampling rate of up to 100 kHz is experimentally verified by detecting locally applied dynamic strain at 1 kHz. When distributed measurements are performed at 100 points with 10 times averaging, a repetition rate of 100 Hz is verified by tracking a mechanical wave propagating along the fibre. Some drawbacks of this ultrahigh-speed configuration, including the reduced measurement accuracy, lowered spatial resolution and limited strain dynamic range, are also discussed. An optical fibre sensing scheme that measures strain with a high spatial resolution and a very high sampling rate has been developed. Optical fibre sensors based on Brillouin scattering are promising for monitoring structural health. The system built by Yosuke Mizuno of Tokyo Institute of Technology and colleagues measures the frequency shift induced in the fibre’s Brillouin gain spectrum on stretching the fibre. This frequency shift is converted into a phase delay of a sinusoidal waveform, which enables the direct detection of the frequency shift. The approach allows single-point strain measurements to be performed at a rate of up to 100 kilohertz at any point along the fibre. Distributed measurements at multiple points along the fibre are also possible, although at lower repetition rates. Importantly, the scheme only requires access from one end of the fibre.

160 citations

Journal ArticleDOI
TL;DR: A Brillouin gain coefficient gB of 6.0 x 10(-9) m/W, about 134 times larger than that of fused silica fiber, is obtained for As2Se3 single mode fiber from measurements of BrillouIn threshold power and the gain linewidth.
Abstract: Strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber is observed using a cw laser at 1.55 microm wavelength region. Brillouin threshold for a 5-m-long fiber is as small as 85 mW. The Brillouin frequency shift vB and the gain linewidth DeltavB are 7.95 GHz and 13.2 MHz, respectively, measured with heterodyne detection and an RF spectrum analyzer. A Brillouin gain coefficient gB of 6.0 x 10(-9) m/W, about 134 times larger than that of fused silica fiber, is obtained for As2Se3 single mode fiber from measurements of Brillouin threshold power and the gain linewidth.

160 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Magnetization
107.8K papers, 1.9M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023430
2022957
2021463
2020543
2019568
2018587