scispace - formally typeset
Search or ask a question
Topic

Brine

About: Brine is a research topic. Over the lifetime, 6542 publications have been published within this topic receiving 76741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combination of thermodynamic relationships, empirical trends, and new and published data was used to examine the effects of pressure, temperature, and composition on these important seismic properties of hydrocarbon gases and oils and of brines.
Abstract: Pore fluids strongly influence the seismic properties of rocks. The densities, bulk moduli, velocities, and viscosities of common pore fluids are usually oversimplified in geophysics. We use a combination of thermodynamic relationships, empirical trends, and new and published data to examine the effects of pressure, temperature, and composition on these important seismic properties of hydrocarbon gases and oils and of brines. Estimates of in-situ conditions and pore fluid composition yield more accurate values of these fluid properties than are typically assumed. Simplified expressions are developed to facilitate the use of realistic fluid properties in rock models. Pore fluids have properties that vary substantially, but systematically, with composition, pressure, and temperature. Gas and oil density and modulus, as well as oil viscosity, increase with molecular weight and pressure, and decrease with temperature. Gas viscosity has a similar behavior, except at higher temperatures and lower pressures, where the viscosity will increase slightly with increasing temperature. Large amounts of gas can go into solution in lighter oils and substantially lower the modulus and viscosity. Brine modulus, density, and viscosities increase with increasing salt content and pressure. Brine is peculiar because the modulus reaches a maximum at a temperature from 40 to 80°C. Far less gas can be absorbed by brines than by light oils. As a result, gas in solution in oils can drive their modulus so far below that of brines that seismic reflection bright spots may develop from the interface between oil saturated and brine saturated rocks.

1,315 citations

Journal ArticleDOI
TL;DR: A review of the evidence for the transport of metals by vapor (which is defined as an aqueous fluid of any composition with a density lower than its critical density) can be found in this article.
Abstract: In most published hydrothermal ore deposit models, the main agent of metal transport is an aqueous liquid. However, there is increasing evidence from volcanic vapors, geothermal systems (continental and submarine), vapor-rich fluid inclusions, and experimental studies that the vapor phase may be an important and even dominant ore fluid in some hydrothermal systems. This paper reviews the evidence for the transport of metals by vapor (which we define as an aqueous fluid of any composition with a density lower than its critical density), clarifies some of the thermodynamic controls that may make such transport possible, and suggests a model for the formation of porphyry and epithermal deposits that involves precipitation of the ores from vapor or a vapor-derived fluid. Analyses of vapor (generally >90% water) released from volcanic fumaroles at temperatures from 500° to over 900°C and near-atmospheric pressure typically yield concentrations of ore metals in the parts per billion to parts per million range. These vapors also commonly deposit appreciable quantities of ore minerals as sublimates. Much higher metal concentrations (from ppm to wt %) are observed in vapor inclusions trapped at pressures of 200 to 1,000 bars in deeper veins at lower temperatures (400°–650°C). Moreover, concentrations of some metals, notably Cu and Au, are commonly higher in vapor inclusions than they are in inclusions of coexisting hypersaline liquid (brine). Experiments designed to determine the concentration of Cu, Sn, Ag, and Au in HCl-bearing water vapor at variable although relatively low pressures (up to 180 bars) partly explain this difference. These experiments show that metal solubility is orders of magnitude higher than predicted by volatility data for water-free systems, and furthermore that it increases sharply with increasing water fugacity and correlates positively with the fugacity of HCl. Thermodynamic analysis shows that metal solubility is greatly enhanced by reaction of the metal with HCl and by hydration, which results in the formation of species such as MeCl m . n H2O. Nonetheless, the concentrations measured by these experiments are considerably lower than those measured in experiments involving aqueous liquids or determined for vapor fluid inclusions. A possible explanation for this and for the apparent preference of metals such as Cu and Au for the vapor over the coexisting brine in some natural settings is suggested by limited experimental studies of metal partitioning between vapor and brine. These studies show that, whereas Cu, Fe, and Zn all partition strongly into the liquid in chloride-bearing sulfur-free systems, Cu partitions preferentially into the vapor in the presence of significant concentrations of sulfur. We therefore infer that high concentrations of Cu and Au in vapor inclusions reflect the strong preference of sulfur for the vapor phase and the formation of sulfur-bearing metallic gas species. Phase stability relationships in the system NaCl-H2O indicate how vapor transport of metals may occur in nature, by showing a range of possible vapor evolution paths for the conditions of porphyry-epithermal systems. At the world-class Bingham Canyon porphyry Cu-Au deposit, evidence from fluid inclusions supports a model in which a single-phase fluid of intermediate to vapor-like density ascends from a magma chamber. On cooling and decompression, this fluid condenses a small fraction of brine by intersecting the two-phase surface on the vapor side of the critical curve, without significantly changing the composition of the expanding vapor. Vapor and brine reach Cu-Fe sulfide saturation as both phases cool below 425°C. Vapor, which is the dominant fluid in terms of the total mass of H2O, Cu, and probably even Cl, is interpreted to be the main agent of metal transport. The evolution of fluids leading to high-grade epithermal gold mineralization is initiated by an H2S-, SO2-, Au-, and variably Cu- and As-rich vapor, which separates from an FeCl2-rich brine in a subjacent porphyry environment. In the early stages of the hydrothermal system, vapor expands rapidly and on reaching the epithermal environment, condenses, producing hypogene advanced argillic alteration and residual vuggy quartz and, in some cases, coeval high-sulfidation precious metal mineralization (e.g., Pascua). More commonly, the introduction of precious metals occurs somewhat later, after the site of magmatic fluid exsolution has receded to greater depth. Because of the relatively high pressure, the vapor separating from brine at this stage cools along a pressure-temperature path above the critical curve of the system, causing it to contract to a liquid capable of transporting several parts per million Au to temperatures as low as 150°C.

536 citations

Journal ArticleDOI
TL;DR: In this article, two reverse osmosis (RO) brine streams with total dissolved solids concentrations averaging 7500 and 17,500 mg/L were further desalinated by VEDCMD and FO.

514 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art of different processes currently used for the treatment of dye house wastewaters and evaluated a four-step process to recover the water and the mineral salts, while leaving the spent dyes in the reject stream.

447 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of salinity on the temperature-depth relations of a brine of constant composition, enclosed in a vein system, but freely connected to the surface, and everywhere at the boiling point for the hydrostatic head, was calculated by using a mathematical model.
Abstract: The effect of salinity on the temperature-depth relations of a brine of constant composition, enclosed in a vein system, but freely connected to the surface, and everywhere at the boiling point for the hydrostatic head, was calculated by using a mathematical model. The Na-Ca-K-Cl brines which are found in thermal springs and in fluid inclusions in ore minerals were approximated by the available data for vapor-saturated NaCl-H 2 O solutions. In general, the results are similar to those calculated by D. E. White in 1968 for H 2 O, except that the gradients are steeper because of the increase in density and the decrease in vapor pressure caused by the dissolved salt. As a practical rule, the depth to an isotherm in a 5, 10, 15, 20, and 25 wt percent NaCl brine system is, respectively, 92, 84, 77, 70, and 63 percent (+ or -2 percent) of the depth to the same isotherm in an H 2 O system. From the data presented, the minimum depth to the growth site of crystals containing fluid inclusions which indicate boiling of the brine can be estimated. Among other applications, these results are useful toward the understanding of the behavior of brines in geothermal areas which may or may not contain compositional stratification.

442 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,209
2021197
2020256
2019351
2018377