scispace - formally typeset
Search or ask a question
Topic

Brine

About: Brine is a research topic. Over the lifetime, 6542 publications have been published within this topic receiving 76741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between brine and the gas phase for volatile solutes.
Abstract: . Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions. We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO 3 . The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of sodium chloride and sodium bromide on the photolysis kinetics of harmine, an aromatic organic compound, in aqueous solution and at the surface of frozen salt solutions above the eutectic temperature were studied.
Abstract: . Reactions at air-ice interfaces can proceed at very different rates than those in aqueous solution, due to the unique disordered region at the ice surface known as the quasi-liquid layer (QLL) . The physical and chemical nature of the surfacial region of ice is greatly affected by solutes such as sodium halide salts. In this work, we studied the effects of sodium chloride and sodium bromide on the photolysis kinetics of harmine, an aromatic organic compound, in aqueous solution and at the surface of frozen salt solutions above the eutectic temperature. In common with other aromatic organic compounds we have studied, harmine photolysis is much faster on ice surfaces than in aqueous solution, but the presence of NaCl or NaBr – which does not affect photolysis kinetics in solution – reduces the photolysis rate on ice. The rate decreases monotonically with increasing salt concentration; at the concentrations found in seawater, harmine photolysis at the surface of frozen salt solutions proceeds at the same rate as in aqueous solution. These results suggest that the brine excluded to the surfaces of frozen salt solutions is a true aqueous solution, and so it may be possible to use aqueous-phase kinetics to predict photolysis rates at sea ice surfaces. This is in marked contrast to the result at the surface of frozen freshwater samples, where reaction kinetics are often not well-described by aqueous-phase processes.

39 citations

Journal ArticleDOI
TL;DR: In this paper, a high-pressure experimental device was designed to perform measurements for carbon dioxide solubility in a complex aqueous solution, which was first validated from experiment on the CO2-pure water system at 323.15 K by comparison with literature data.
Abstract: Interest in CO2 solubility in brine at high pressure and high temperature has grown in the last few decades. Solubility data are especially important in petroleum geology, carbon capture and geological storage, and geothermal reservoir engineering. Nevertheless, for the CO2 + NaCl + H2O system there are fewer solubility data available in literature, particularly at high salt molality. A high-pressure experimental device was designed to perform measurements for carbon dioxide solubility in a complex aqueous solution. The apparatus was first validated from experiment on the CO2–pure water system at 323.15 K by comparison with literature data. Thirty-six new experimental solubility data point were obtained in the pressure range between 5 and 20 MPa at three temperatures (323.15, 373.15, and 423.15 K) and at three molalities of NaCl (1, 3, and 6 moles per kilogram of water). Solubility measurements were obtained by potentiometric titration after sample trapping in a sodium hydroxide solution. The experimental...

39 citations

Patent
24 Nov 1970
TL;DR: In this paper, an apparatus and a method for separating salt from a brine solution for accelerating the solution through a nozzle member and subsequently decelerating the flow through a diffuser member is described.
Abstract: The disclosure relates to an apparatus and a method for separating salt from a brine solution for accelerating the brine solution through a nozzle member and subsequently decelerate the flow through a diffuser member. The acceleration and deceleration of the solution causes the brine to move into a predetermined stream portion of the flow. A tubular passage having its inlet disposed within the interior of the diffuser member intersects the predetermined stream portion and receives and thereby segregates the brine from the flow, whereby the remainder of the flow is water with a reduced concentrate of salt therein.

39 citations

Patent
13 Jun 1980
TL;DR: In this paper, a system for the production and storage of sodium hypoclorite consisting of a source of soft or deionized water, a storage tank of saturated salt brine solution, an electrolytic chlorine generation unit wherein the saturated salt and soft water from the storage tanks react at the anode and cathode respectively to produce chlorine gas and sodium hydroxide as the main products, means for mixing chlorine and sodium hyroxide to form sodium hypochlorite and a storage storage tank where the sodium hyclorite is stored.
Abstract: System for the production and storage of sodium hypoclorite consisting of a source of soft or deionized water, a storage tank of saturated salt brine solution, a storage tank for soft or deionized water, an electrolytic chlorine generation unit wherein the saturated salt and soft water from the storage tanks react at the anode and cathode respectively to produce chlorine gas and sodium hydroxide as the main products, means for mixing chlorine and sodium hydroxide to form sodium hypochlorite and a storage tank where the sodium hypoclorite is stored. Pumps or valves for transport of the saturated salt brine and the soft water to the electrolytic unit, piping or tubing for intermixing the chlorine gas and sodium hydroxide, float valves or other valve devices in the storage tank to regulate the volume input are also included as part of the system. A power unit regulates the flow of liquids through the system and operates the electrolytic chlorine generation unit.

39 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,209
2021197
2020256
2019351
2018377