scispace - formally typeset
Search or ask a question
Topic

Broadcasting

About: Broadcasting is a research topic. Over the lifetime, 16733 publications have been published within this topic receiving 168488 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors discuss the potential of OFDM signaling, with its limitations and inherent problems, as well as another potential technique that has so far been overlooked: single-carrier transmission with frequency- domain equalization, and introduces coded-OFDM (COFDM), which makes use of channel coding and frequency-domain interleaving.
Abstract: The authors discuss the potential of OFDM signaling, with its limitations and inherent problems, as well as another potential technique that has so far been overlooked: single-carrier transmission with frequency-domain equalization. The carrier synchronisation issue is dealt with before the authors introduce coded-OFDM (COFDM), which makes use of channel coding and frequency-domain interleaving. >

1,423 citations

Journal ArticleDOI
TL;DR: This article develops a systematic discrete-time framework and designs novel systems for single- and multiuser wireless multicarrier communications-a field rich in signal processing challenges that holds great potential in various applications including audio/video broadcasting, cable television, modem design, multimedia services, mobile local area networks, and future-generation wideband cellular systems.
Abstract: Relying on basic tools such as eigensignals of linear time-invariant systems, linear and circular block convolution, and fast Fourier transforms (FFTs), this article develops a systematic discrete-time framework and designs novel systems for single- and multiuser wireless multicarrier communications-a field rich in signal processing challenges that holds great potential in various applications including audio/video broadcasting, cable television, modem design, multimedia services, mobile local area networks, and future-generation wideband cellular systems. Wireless multicarrier (MC) communication systems utilize multiple complex exponentials as information-bearing carriers. MC transmissions thus retain their shape and orthogonality when propagating through linear time-dispersive media, precisely as eigensignals do when they pass through linear time-invariant (LTI) systems.

1,376 citations

Journal ArticleDOI
TL;DR: This paper considers the problem of downlink transmit beamforming for wireless transmission and downstream precoding for digital subscriber wireline transmission, in the context of common information broadcasting or multicasting applications wherein channel state information (CSI) is available at the transmitter.
Abstract: This paper considers the problem of downlink transmit beamforming for wireless transmission and downstream precoding for digital subscriber wireline transmission, in the context of common information broadcasting or multicasting applications wherein channel state information (CSI) is available at the transmitter. Unlike the usual "blind" isotropic broadcasting scenario, the availability of CSI allows transmit optimization. A minimum transmission power criterion is adopted, subject to prescribed minimum received signal-to-noise ratios (SNRs) at each of the intended receivers. A related max-min SNR "fair" problem formulation is also considered subject to a transmitted power constraint. It is proven that both problems are NP-hard; however, suitable reformulation allows the successful application of semidefinite relaxation (SDR) techniques. SDR yields an approximate solution plus a bound on the optimum value of the associated cost/reward. SDR is motivated from a Lagrangian duality perspective, and its performance is assessed via pertinent simulations for the case of Rayleigh fading wireless channels. We find that SDR typically yields solutions that are within 3-4 dB of the optimum, which is often good enough in practice. In several scenarios, SDR generates exact solutions that meet the associated bound on the optimum value. This is illustrated using measured very-high-bit-rate Digital Subscriber line (VDSL) channel data, and far-field beamforming for a uniform linear transmit antenna array.

1,345 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: This work develops the broadcast incremental power algorithm, and adapt it to multicast operation as well, and demonstrates that this algorithm provides better performance than algorithms that have been developed for the link-based, wired environment.
Abstract: The wireless networking environment presents formidable challenges to the study of broadcasting and multicasting problems. After addressing the characteristics of wireless networks that distinguish them from wired networks, we introduce and evaluate algorithms for tree construction in infrastructureless, all-wireless applications. The performance metric used to evaluate broadcast and multicast trees is energy-efficiency. We develop the broadcast incremental power algorithm, and adapt it to multicast operation as well. This algorithm exploits the broadcast nature of the wireless communication environment, and addresses the need for energy-efficient operation. We demonstrate that our algorithm provides better performance than algorithms that have been developed for the link-based, wired environment.

1,149 citations

Journal ArticleDOI
TL;DR: This paper proposes to significantly reduce or eliminate the communication overhead of a broadcasting task by applying the concept of localized dominating sets, which do not require any communication overhead in addition to maintaining positions of neighboring nodes.
Abstract: In a multihop wireless network, each node has a transmission radius and is able to send a message to all of its neighbors that are located within the radius. In a broadcasting task, a source node sends the same message to all the nodes in the network. In this paper, we propose to significantly reduce or eliminate the communication overhead of a broadcasting task by applying the concept of localized dominating sets. Their maintenance does not require any communication overhead in addition to maintaining positions of neighboring nodes. Retransmissions by only internal nodes in a dominating set is sufficient for reliable broadcasting. Existing dominating sets are improved by using node degrees instead of their ids as primary keys. We also propose to eliminate neighbors that already received the message and rebroadcast only if the list of neighbors that might need the message is nonempty. A retransmission after negative acknowledgements scheme is also described. The important features of the proposed algorithms are their reliability (reaching all nodes in the absence of message collisions), significant rebroadcast savings, and their localized and parameterless behavior. The reduction in communication overhead for the broadcasting task is measured experimentally. Dominating set based broadcasting, enhanced by a neighbor elimination scheme and highest degree key, provides reliable broadcast with /spl les/53 percent of node retransmissions (on random unit graphs with 100 nodes) for all average degrees d. Critical d is around 4, with <48 percent for /spl les/3, /spl les/40 percent for d/spl ges/10, and /spl les/20 percent for d/spl ges/25. The proposed methods are better than existing ones in all considered aspects: reliability, rebroadcast savings, and maintenance communication overhead. In particular, the cluster structure is inefficient for broadcasting because of considerable communication overhead for maintaining the structure and is also inferior in terms of rebroadcast savings.

930 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
82% related
Wireless
133.4K papers, 1.9M citations
82% related
The Internet
213.2K papers, 3.8M citations
81% related
Network packet
159.7K papers, 2.2M citations
81% related
Server
79.5K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
2021161
2020372
2019535
2018490
2017562