Topic
Brooks–Iyengar algorithm
About: Brooks–Iyengar algorithm is a research topic. Over the lifetime, 5223 publications have been published within this topic receiving 138976 citations. The topic is also known as: Brooks–Iyengar hybrid algorithm.
Papers published on a yearly basis
Papers
More filters
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.
Abstract: This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.
17,936 citations
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.
12,497 citations
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.
4,889 citations
09 Jul 2003
TL;DR: This paper proposes a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters, and extends this algorithm to generate a hierarchy of clusterheads and observes that the energy savings increase with the number of levels in the hierarchy.
Abstract: A wireless network consisting of a large number of small sensors with low-power transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passing process must be designed to conserve the limited energy resources of the sensors. Clustering sensors into groups, so that sensors communicate information only to clusterheads and then the clusterheads communicate the aggregated information to the processing center, may save energy. In this paper, we propose a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters. We then extend this algorithm to generate a hierarchy of clusterheads and observe that the energy savings increase with the number of levels in the hierarchy. Results in stochastic geometry are used to derive solutions for the values of parameters of our algorithm that minimize the total energy spent in the network when all sensors report data through the clusterheads to the processing center.
1,935 citations
Journal Article•
TL;DR: A decentralized density control algorithm, Optimal Geographical Density Control (OGDC), is devised for density control in large scale sensor networks and can maintain coverage as well as connectivity, regardless of the relationship between the radio range and the sensing range.
Abstract: In this paper, we address the issues of maintaining sensing coverage and connectivity by keeping a minimum number of sensor nodes in the active mode in wireless sensor networks. We investigate the relationship between coverage and connectivity by solving the following two sub-problems. First, we prove that if the radio range is at least twice the sensing range, complete coverage of a convex area implies connectivity among the working set of nodes. Second, we derive, under the ideal case in which node density is sufficiently high, a set of optimality conditions under which a subset of working sensor nodes can be chosen for complete coverage. Based on the optimality conditions, we then devise a decentralized density control algorithm, Optimal Geographical Density Control (OGDC), for density control in large scale sensor networks. The OGDC algorithm is fully localized and can maintain coverage as well as connectivity, regardless of the relationship between the radio range and the sensing range. Ns-2 simulations show that OGDC outperforms existing density control algorithms [25, 26, 29] with respect to the number of working nodes needed and network lifetime (with up to 50% improvement), and achieves almost the same coverage as the algorithm with the best result.
1,559 citations