scispace - formally typeset
Topic

Brown rice

About: Brown rice is a(n) research topic. Over the lifetime, 8180 publication(s) have been published within this topic receiving 81079 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: The increases in circulating GLP-1(7-36)amide and GIP levels following carbohydrate or a mixed meal are consistent with their role as incretins, and the more sustained rises observed in the daytime during the 24-h study are inconsistent with an anabolic role in lipid metabolism.
Abstract: The acute effects of different macronutrients on the secretion of glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) and glucose-dependent insulinotropic polypeptide (GIP) were compared in healthy human subjects. Circulating levels of the two hormones were measured over a 24-h period during which subjects consumed a mixed diet. In the first study, eight subjects consumed three equicaloric (375 kcal) test meals of carbohydrate, fat and protein. Small increases in plasma GLP-1(7-36) amide were found after all meals. Levels reached a maximum 30 min after the carbohydrate and 150 min after the fat load. Ingestion of both carbohydrate and fat induced substantial rises in GIP secretion, but the protein meal had no effect. In a second study, eight subjects consumed 75 g glucose or the equivalent portion of complex carbohydrate as boiled brown rice or barley. Plasma GIP, insulin and glucose levels increased after all three meals, the largest increase being observed following glucose and the smallest following the barley meal. Plasma GLP-1(7-36)amide levels rose only following the glucose meal. In the 24-h study, plasma GLP-1(7-36)amide and GIP concentrations were increased following every meal and remained elevated throughout the day, only falling to fasting levels at night. The increases in circulating GLP-1(7-36)amide and GIP levels following carbohydrate or a mixed meal are consistent with their role as incretins. The more sustained rises observed in the daytime during the 24-h study are consistent with an anabolic role in lipid metabolism.

668 citations

Journal ArticleDOI

[...]

TL;DR: It is revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.
Abstract: The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.

402 citations

Journal Article

[...]

TL;DR: Brown rice and bran contain compounds with putative cancer chemopreventive properties and these phenols are present at much lower levels in white than in brown rice, suggesting the consumption of rice bran or brown rice instead of milled white rice may be advantageous with respect to cancer prevention.
Abstract: Rice is a staple diet in Asia, where the incidence of breast and colon cancer is markedly below that in the Western world. We investigated potential colon and breast tumor-suppressive properties of rice, testing the hypothesis that rice contains phenols that interfere with the proliferation or colony-forming ability of breast or colon cells. Brown rice, its white milled counterpart, and bran from brown rice were boiled and extracted with ethyl acetate. The extracts were analyzed by high pressure liquid chromatography-mass spectrometry. Eight phenols, protocatechuic acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, vanillic acid, methoxycinnamic acid, and tricin, were identified in the extracts of bran and intact brown rice. These extracts were separated into nine fractions by column chromatography. The effect of bran extract and its fractions at 100 microg/ml on cell viability and colony-forming ability of human-derived breast and colon cell lines was assessed. Bran extract decreased numbers of viable MDA MB 468 and HBL 100 breast cells and colon-derived SW 480 and human colonic epithelial cells as judged by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4 -sulfophenyl)-2H-tetrazolium assay. It also reduced colony formation of SW 480 colon and MDA MB 468 breast cells. Of the eight phenols identified in the brown rice bran, when applied at 50 microM, caffeic acid decreased numbers of all cell types except HBL 100. Tricin, ferulic acid, and methoxycinnamic acid interfered with cell viability in one or more cell lines. Tricin (50 microM) and the other phenols (200 microM) inhibited colony formation of SW 480 cells. Clonogenicity of MDA MB 468 cells was inhibited by caffeic acid, ferulic acid, and tricin (50 microM). Tricin was the most potent anticlonogenic of the compounds with IC50s of 16 microM in the SW 480 colon cells and 0.6 microM in the MDA MB 468 breast cells. The results suggest that: (a) brown rice and bran contain compounds with putative cancer chemopreventive properties; (b) certain phenols contained in brown rice bran, e.g., tricin, may be associated with this activity; and (c) these phenols are present at much lower levels in white than in brown rice. Thus, the consumption of rice bran or brown rice instead of milled white rice may be advantageous with respect to cancer prevention.

391 citations

Journal ArticleDOI

[...]

TL;DR: Substitution of whole grains, including brown rice, for white rice may lower risk of type 2 diabetes, and the recommendation that most carbohydrate intake should come from whole grains rather than refined grains to help prevent type 2abetes is supported.
Abstract: Background Because of differences in processing and nutrients, brown rice and white rice may have different effects on risk of type 2 diabetes mellitus. We examined white and brown rice consumption in relation to type 2 diabetes risk prospectively in the Health Professionals Follow-up Study and the Nurses' Health Study I and II. Methods We prospectively ascertained and updated diet, lifestyle practices, and disease status among 39 765 men and 157 463 women in these cohorts. Results After multivariate adjustment for age and other lifestyle and dietary risk factors, higher intake of white rice (≥5 servings per week vs Conclusions Substitution of whole grains, including brown rice, for white rice may lower risk of type 2 diabetes. These data support the recommendation that most carbohydrate intake should come from whole grains rather than refined grains to help prevent type 2 diabetes.

383 citations

Journal ArticleDOI

[...]

TL;DR: The results demonstrated that the content of insoluble phenolic compounds was significantly higher than that of soluble phenolics in rice, whereas almost all compounds identified in germinated brown rice and brown rice were more abundant than those in white rice.
Abstract: Two hydroxycinnamate sucrose esters, 6‘-O-(E)-feruloylsucrose and 6‘-O-(E)-sinapoylsucrose, were isolated from methanol extracts of rice bran. Soluble and insoluble phenolic compounds as well as 6‘-O-(E)-feruloylsucrose and 6‘-O-(E)-sinapoylsucrose from white rice, brown rice, and germinated brown rice were analyzed using HPLC. The results demonstrated that the content of insoluble phenolic compounds was significantly higher than that of soluble phenolics in rice, whereas almost all compounds identified in germinated brown rice and brown rice were more abundant than those in white rice. 6‘-O-(E)-Feruloylsucrose (1.09 mg/100 g of flour) and 6‘-O-(E)-sinapoylsucrose (0.41 mg/100 g of flour) were found to be the major soluble phenolic compounds in brown rice. During germination, an ∼70% decrease was observed in the content of the two hydroxycinnamate sucrose esters, whereas free phenolic acid content increased significantly; the ferulic acid content of brown rice (0.32 mg/100 g of flour) increased to 0.48 mg...

382 citations


Network Information
Related Topics (5)
Starch
50.2K papers, 1M citations
79% related
Fermentation
68.8K papers, 1.2M citations
77% related
DPPH
30.1K papers, 759.9K citations
76% related
Fertilizer
60.1K papers, 609.2K citations
76% related
Water content
49.8K papers, 1.1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20227
2021253
2020369
2019426
2018608
2017756