scispace - formally typeset
Search or ask a question

Showing papers on "Brown rice published in 2013"


Journal ArticleDOI
TL;DR: It is revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.
Abstract: The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.

481 citations


Journal ArticleDOI
TL;DR: The meta-analysis suggests that a high whole grain intake, but not refined grains, is associated with reduced type 2 diabetes risk and support public health recommendations to replace refined grains with whole grains and suggest that at least two servings of whole grains per day should be consumed to reduce type 1 diabetes risk.
Abstract: Several studies have suggested a protective effect of intake of whole grains, but not refined grains on type 2 diabetes risk, but the dose–response relationship between different types of grains and type 2 diabetes has not been established. We conducted a systematic review and meta-analysis of prospective studies of grain intake and type 2 diabetes. We searched the PubMed database for studies of grain intake and risk of type 2 diabetes, up to June 5th, 2013. Summary relative risks were calculated using a random effects model. Sixteen cohort studies were included in the analyses. The summary relative risk per 3 servings per day was 0.68 (95 % CI 0.58–0.81, I2 = 82 %, n = 10) for whole grains and 0.95 (95 % CI 0.88–1.04, I2 = 53 %, n = 6) for refined grains. A nonlinear association was observed for whole grains, pnonlinearity < 0.0001, but not for refined grains, pnonlinearity = 0.10. Inverse associations were observed for subtypes of whole grains including whole grain bread, whole grain cereals, wheat bran and brown rice, but these results were based on few studies, while white rice was associated with increased risk. Our meta-analysis suggests that a high whole grain intake, but not refined grains, is associated with reduced type 2 diabetes risk. However, a positive association with intake of white rice and inverse associations between several specific types of whole grains and type 2 diabetes warrant further investigations. Our results support public health recommendations to replace refined grains with whole grains and suggest that at least two servings of whole grains per day should be consumed to reduce type 2 diabetes risk.

432 citations


Journal ArticleDOI
Fengfeng Wu1, Na Yang1, Alhassane Toure1, Zhengyu Jin1, Xueming Xu1 
TL;DR: Germinated brown rice is considered healthier than white rice, as it is not only richer in the basic nutritional components such as vitamins, minerals, dietary fibers, and essential amino acids, but also contains more bioactive components, such as ferulic acid, γ-oryzanol, and gamma aminobutyric acid.
Abstract: Brown rice, unmilled or partly milled, contains more nutritional components than ordinary white rice. Despite its elevated content of bioactive components, brown rice is rarely consumed as a staple food for its dark appearance and hard texture. The germination of brown rice can be used to improve its taste and further enhance its nutritional value and health functions. Germinated brown rice is considered healthier than white rice, as it is not only richer in the basic nutritional components such as vitamins, minerals, dietary fibers, and essential amino acids, but also contains more bioactive components, such as ferulic acid, γ-oryzanol, and gamma aminobutyric acid. Moreover, germinated brown rice has been reported to exhibit many physiological effects, including antihyperlipidemia, antihypertension, and the reduction in the risk of some chronic diseases, such as cancer, diabetes, cardiovascular disease, and Alzheimer's disease. Therefore, it is likely that germinated brown rice will become a popular health food.

163 citations


Journal ArticleDOI
TL;DR: Investigation of the effects of four water management regimes on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China indicates that ‘safe’ rice with respect to As andCd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.
Abstract: Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.

143 citations


Journal ArticleDOI
TL;DR: OsHMA5 was mainly expressed in the roots at the vegetative stage but also in nodes, peduncle, rachis, and husk at the reproductive stage, and was up-regulated by excess Cu but not by the deficiency of Cu and other metals, including zinc, iron, and manganese, at the Vegetative stage.
Abstract: Heavy metal-transporting P-type ATPase (HMA) has been implicated in the transport of heavy metals in plants. Here, we report the function and role of an uncharacterized member of HMA, OsHMA5 in rice (Oryza sativa). Knockout of OsHMA5 resulted in a decreased copper (Cu) concentration in the shoots but an increased Cu concentration in the roots at the vegetative stage. At the reproductive stage, the concentration of Cu in the brown rice was significantly lower in the mutants than in the wild-type rice; however, there was no difference in the concentrations of iron, manganese, and zinc between two independent mutants and the wild type. The Cu concentration of xylem sap was lower in the mutants than in the wild-type rice. OsHMA5 was mainly expressed in the roots at the vegetative stage but also in nodes, peduncle, rachis, and husk at the reproductive stage. The expression was up-regulated by excess Cu but not by the deficiency of Cu and other metals, including zinc, iron, and manganese, at the vegetative stage. Analysis of the transgenic rice carrying the OsHMA5 promoter fused with green fluorescent protein revealed that it was localized at the root pericycle cells and xylem region of diffuse vascular bundles in node I, vascular tissues of peduncle, rachis, and husk. Furthermore, immunostaining with an antibody against OsHMA5 revealed that it was localized to the plasma membrane. Expression of OsHMA5 in a Cu transport-defective mutant yeast (Saccharomyces cerevisiae) strain restored the growth. Taken together, OsHMA5 is involved in loading Cu to the xylem of the roots and other organs.

138 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the concentration of total soluble phenolic compounds (TSPCs) and antioxidant activity (AOA) of rice grains with light brown, red and black pericarp colors.

125 citations


Journal ArticleDOI
TL;DR: Zinc in rice grains can be effectively raised by foliar Zn application after flowering, with a potential benefit of this to rice eaters indicated by up to 55% increases of brown rice Zn, and agronomically in more rapid early growth and establishment.
Abstract: This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4 · 7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67 mg Zn kg−1 had longer roots and coleoptiles than those from seeds with 18 mg Zn kg−1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r = 0.55, p < 0.05). Zinc in rice grains ...

117 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of silicon application to three rice paddy soils on the dynamics of Si, iron (Fe), phosphorus (P), and As in the soil solution, As accumulation in rice straw, flag leaf, husk, brown rice, and polished rice.
Abstract: Silicon (Si) reduces arsenic (As) levels in rice shoot and grain. However, the underlying mechanisms remain unclear. In this study, we examined the effect of Si application to three rice paddy soils on the dynamics of Si, iron (Fe), phosphorus (P), and As in the soil solution, As accumulation in rice straw, flag leaf, husk, brown rice, and polished rice, and on As speciation in polished rice. Silicon application to soil increased the concentrations of Si, Fe, As, and P in the soil solution, while the redox potential was unaffected. Arsenic concentrations of straw, flag leaf, and husk were reduced by half by Si application, while As concentrations of brown and polished rice were decreased by 22%. The main As species in polished rice was arsenite, As(III), with a fraction of 70%, followed by dimethylarsinic acid (DMA) and arsenate, As(V), with 24% and 6%, respectively. Silicon application to the soil did not affect DMA or As(V) concentration of polished rice, while the As(III) concentration was reduced by 33%. These results confirm that Si reduces As(III) uptake and translocation into the shoot. Furthermore, data indicate that decrease of As concentration of polished rice is due to decreased As(III) transport into grain. Possible underlying mechanisms are discussed.

114 citations


Journal ArticleDOI
TL;DR: In this article, the effect of germination time on the selected physicochemical properties of brown rice flour and starch prepared from three different rice cultivars was investigated, and changes in total starch, amylose and amylopectin contents of flour and molecular weight of starch, gelatinization, pasting, rheological, and morphological properties were investigated.

114 citations


Journal ArticleDOI
22 Feb 2013-PLOS ONE
TL;DR: Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements, and Mobilization of the minerals from specific seed locations during germination was also element-specific.
Abstract: Knowledge of mineral localization within rice grains is important for understanding the role of different elements in seed development, as well as for facilitating biofortification of seed micronutrients in order to enhance seeds’ values in human diets. In this study, the concentrations of minerals in whole rice grains, hulls, brown rice, bran and polished rice were quantified by inductively coupled plasma mass spectroscopy. The in vivo mineral distribution patterns in rice grains and shifts in those distribution patterns during progressive stages of germination were analyzed by synchrotron X-ray microfluorescence. The results showed that half of the total Zn, two thirds of the total Fe, and most of the total K, Ca and Mn were removed by the milling process if the hull and bran were thoroughly polished. Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements. Mobilization of the minerals from specific seed locations during germination was also element-specific. High mobilization of K and Ca from grains to growing roots and leaf primordia was observed; the flux of Zn to these expanding tissues was somewhat less than that of K and Ca; the mobilization of Mn or Fe was relatively low, at least during the first few days of germination.

112 citations


Journal ArticleDOI
TL;DR: Rice PLs may be influenced both by genetic (G) and environmental (E) factors, and resolving G×E interactions may allow future exploitation of PL composition and content, thus boosting rice eating quality and health benefits for consumers.

Journal ArticleDOI
TL;DR: In this paper, the authors found a water management regime that can lower accumulation of both Cd and As in grain without yield loss, but they did not consider the effect of water management on the bioavailability of rice grains and grain yields.
Abstract: Water management affects the bioavailability of cadmium (Cd) and arsenic (As) in the soil and hence their accumulation in rice grains and grain yields. However, Cd and As show opposite responses to soil water content, but information, particularly on irrigation, is missing on a field scale. The purpose of the present study was therefore to find a water management regime that can lower accumulation of both Cd and As in grain without yield loss. Two rice (Oryza sativa L.) cultivars, A16 and A159, with different grain Cd accumulation capacities were employed in field plot experiments with four water management regimes comprising aerobic, intermittent, conventional practice and flooded. The dynamics of Cd and As bioavailability in the soil and Cd and As concentrations in roots, straw and grains were determined at the early tillering, full tillering, panicle initiation, filling and maturity stages of crop growth. The lower water content regimes (aerobic and intermittent) mostly led to higher soil HCl-extractable Cd than the higher soil water content regimes (conventional and flooded). HCl-extractable As in contrast was favoured by the higher soil water content treatments. Conventional and flooded irrigation accordingly gave higher plant As concentrations but lower Cd compared to aerobic and intermittent irrigation. Cd concentrations in roots and straw of both varieties increased with growth stage, especially in aerobic and intermittent regimes, while As concentrations in plants showed little change or a slight decrease. As the water irrigation volume increased from aerobic to flooded, brown rice Cd decreased from 1.15 to 0.02 mg kg(-1) in cultivar A16 and from 1.60 to 0.05 mg kg(-1) in cultivar A159, whereas brown rice As increased. Aerobic and flooded treatments produced approximately 10-20 % lower grain yields than intermittent and conventional treatments. Cultivars with low Cd accumulation capacity show higher brown rice grain As than those with high Cd uptake capacity. Of the four water management regimes, the conventional irrigation method (flooding maintained until full tillering followed by intermittent irrigation) ensured high yield with low Cd and As in the brown rice and so remains the recommended irrigation regime.

Journal ArticleDOI
TL;DR: Evaluated yield potential and the constraints of the recently developed HYVs in Japan indicate that the improvement of grain-filling by the stimulation of source activity and translocation of NSC is important for japonica-dominant varieties, and the improved sink production efficiency would result in the increase of the yield potential in the indica-Dominant varieties.

Journal ArticleDOI
TL;DR: Foliar Fe amino acid (Fe-AA) fertiliser significantly improved the Fe concentration in brown rice of most cultivars and suggested that NA at a suitable concentration added to Fe-AA fertiliser could accelerate Fe accumulation in rice grain.
Abstract: BACKGROUND: Foliar sprays of iron (Fe) and zinc (Zn) fertilisers are known to be an effective way to improve Fe and Zn concentrations in rice grain. However, results can differ significantly among different rice cultivars and/or types of foliar fertiliser. In this study, several Fe-rich rice cultivars were used to identify an effective foliar fertiliser for optimal Fe and Zn enrichment of rice grain. RESULTS: Foliar Fe amino acid (Fe-AA) fertiliser significantly improved the Fe concentration in brown rice of most cultivars. Compared with the control, the average Fe concentration in all tested cultivars was increased by 14.5%. The average Fe concentration was increased by 32.5% when 1% (w/v) nicotianamine (NA) was added to Fe-AA, while the average Zn concentration was increased by 42.4% when 0.5% (w/v) ZnSO4 · 7H2O was added to Fe-AA. CONCLUSION: The results suggested that NA at a suitable concentration added to Fe-AA fertiliser could accelerate Fe accumulation in rice grain. A relatively low concentration of ZnSO4 · 7H2O added to Fe-AA significantly increased Fe and Zn accumulation in rice grain. The study identified some useful foliar fertilisers for enhancing the levels of Fe and Zn in selected Fe-rich rice cultivars. Copyright © 2012 Society of Chemical Industry

Journal ArticleDOI
TL;DR: Cold atmospheric plasma jet treatment is demonstrated to have the potential to control mold growth on various food products by inhibiting growth of Aspergillus flavus on agar media and brown rice cereal bars.

Journal ArticleDOI
TL;DR: The results show that agronomic Zn biofortification through foliar Zn application is likely to be much more effective at increasing grain Zn concentration of genotypes with strong Zn-remobilization capacity than those with weak remobilized capacity.

Journal ArticleDOI
TL;DR: This paper found that one of the major components of brown rice, γ-oryzanol (Orz), plays an important role in the metabolically beneficial effects of brown Rice and showed that Orz acts as a chemical chaperone and decreases high fat diet (HFD)-induced endoplasmic reticulum (ER) stress in the hypothalamus.

Journal ArticleDOI
TL;DR: In this paper, the effects of parboiling and a 6-month storage period on the contents of vitamin E and γ-oryzanol in three brown rice cultivars grown in three different locations in Brazil were investigated.

Journal ArticleDOI
TL;DR: The remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity is demonstrated.
Abstract: In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR) were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

Journal ArticleDOI
TL;DR: A double-haploid population derived from the cross between cultivars Chunjiang 06 and TN1 was grew under two different ecological environments and the content of Ca, Fe, K, Mg, Mn, P, and Zn was determined, suggesting that clusters of genes exist on chromosomes 8 and 9.
Abstract: Optimizing the beneficial mineral elements in rice grains is of interest for rice breeders. To study the environmental effects on mineral accumulation in rice grains, we grew a double-haploid (DH) population derived from the cross between cultivars Chunjiang 06 (CJ06, a japonica rice) and TN1 (an indica rice) under two different ecological environments (Lingshui and Hangzhou, China) and determined the content of Ca, Fe, K, Mg, Mn, P, and Zn in brown rice. These contents show transgressive variation among the DH lines. Subsequently, the quantitative trait loci (QTLs) for mineral accumulation in rice grain were mapped on the chromosomes using CJ06/TN1 population. For the 7 mineral elements investigated, 23 and 9 QTLs were identified for Lingshui and Hangzhou, respectively. Of these, 24 QTLs were reported for the first time in this study and 8 QTLs are consistent with previous reports. Only 2 QTLs for Mg accumulation have been detected in both environments, indicating that mineral accumulation QTLs in rice grains are largely environment dependent. Additionally, co-localizations of QTLs for Mn and Zn, Mg and P, and Mg and Mn accumulation have been observed, implying that these loci might be involved in the accumulation of different elements. Furthermore, the QTLs for the accumulation of Fe, K, Mg, Mn, P, and Zn were mapped to a region close to each other on chromosomes 8 and 9, suggesting that clusters of genes exist on chromosomes 8 and 9. Further characterization of these QTLs will provide a better understanding of the molecular mechanism responsible for mineral accumulation in rice grains.

Journal ArticleDOI
TL;DR: The quantity of gastric secretions observed after a brown or white rice meal may be related to the meal buffering capacity, and are accumulated in the distal stomach, according to the mechanism of physical breakdown for brown and white rice.
Abstract: BACKGROUND Rice structure is important to rice grain and starch breakdown during digestion. The objective of this study was to determine the gastric emptying and rice composition during gastric digestion of cooked brown and white medium-grain (Calrose variety) rice using the growing pig as a model for the adult human. RESULTS Brown and white rice did not show significantly different gastric emptying rates of dry matter or starch, but brown rice had slower protein emptying (P < 0.05). Moisture content was greater and pH was lower in the distal stomach compared to the proximal stomach (P < 0.0001), and varied with time (P < 0.0001). The mechanism of physical breakdown for brown and white rice varied. Brown rice exhibited an accumulation of bran layer fragments in the distal stomach, quantified by lower starch and higher protein content. CONCLUSION The quantity of gastric secretions observed after a brown or white rice meal may be related to the meal buffering capacity, and are accumulated in the distal stomach. The delayed rate of protein emptying in brown rice compared to white rice was most likely due to the accumulation of bran layers in the stomach. © 2013 Society of Chemical Industry

Journal ArticleDOI
TL;DR: Germinated brown rice supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques.

Journal ArticleDOI
TL;DR: The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City.

Journal ArticleDOI
TL;DR: Investigation of variations and similarities in total Hg (THg) and methylmercury (MeHg) accumulations in brown rice (seeds) across sites suggested that appropriate cultivar selection is a possible way to reduce THg and MeHg accumulation in seeds of rice grown in Hg-contaminated regions.

Journal ArticleDOI
TL;DR: Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars; however, the GABA content in nonpigmented GBR was higher.
Abstract: This study examined the changes of tocopherols (Toc), tocotrienols (T3), γ-oryzanol (GO), and γ-aminobutyric acid (GABA) contents in germinated brown rice (GBR) of pigmented and nonpigmented cultivars under different germination conditions. Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars. The pigmented GBR possessed higher total vitamin E, total Toc, total T3, and GO contents than the nonpigmented GBR; however, its level of GABA was lower. The order of the three highest vitamin E homologues in pigmented and nonpigmented GBR was γ-T3 > γ-Toc > α-Toc and α-Toc > γ-T3 > α-T3, respectively; β-Toc, β-T3, δ-Toc, and δ-T3 were present in only small amounts (≤1.0 mg/kg) in GBR of both cultivars. Although both cultivars showed an increase in GABA contents with increasing germination time, the GABA content in nonpigmented GBR was higher.

Journal ArticleDOI
TL;DR: The developed models can be used to estimate to what extent the change in grain ecosystem conditions affect the storage stability and safety of grains without the need for running long-standing storage study.
Abstract: UNLABELLED The aim of this study was to model the radial growth rate and to assess aflatoxin production by Aspergillus flavus as a function of water activity (a(w) 0.82 to 0.92) and temperature (12 to 42 °C) on polished and brown rice. The growth of the fungi, expressed as colony diameter (mm) was measured daily, and the aflatoxins were analyzed using HPLC with a fluorescence detector. The growth rates were estimated using the primary model of Baranyi, which describes the change in colony radius as a function of time. Total of 2 secondary models were used to describe the combined effects of a(w) and temperature on the growth rates. The models were validated using independent experimental data. Linear Arrhenius-Davey model proved to be the best predictor of A. flavus growth rates on polished and brown rice followed by polynomial model. The estimated optimal growth temperature was around 30 °C. A. flavus growth and aflatoxins were not detected at 0.82 a(w) on polished rice while growth and aflatoxins were detected at this a(w) between 25 and 35 °C on brown rice. The highest amounts of toxins were formed at the highest a(w) values (0.90 to 0.92) at a temperature of 20 °C after 21 d of incubation on both types of rice. Nevertheless, the consistencies of toxin production within a wider range of a(w) values occurred between 25 to 30 °C. Brown rice seems to support A. flavus growth and aflatoxin production more than the polished rice. PRACTICAL APPLICATION The developed models can be used to estimate to what extent the change in grain ecosystem conditions affect the storage stability and safety of grains without the need for running long-standing storage study. By monitoring the intergranular relative humidity and temperature at different locations in the storage facility and inputting these data into the models, it is directly possible to assess either the conditions are conductive for the growth of A. flavus or aflatoxin production.

Journal ArticleDOI
TL;DR: The results of this study showed that the ethyl acetate extract of GBR, with high antioxidant potentials, could prevent H2O2-induced oxidative damage in SH-SY5Y cells.
Abstract: There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer’s disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD. The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H2O2)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System. The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H2O2-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and catalase) and apoptotic (AKT, NF-Kβ, ERK1/2, JNK, p53 and p38 MAPK) genes that tended towards survival. Taken together, the results of our study showed that the ethyl acetate extract of GBR, with high antioxidant potentials, could prevent H2O2-induced oxidative damage in SH-SY5Y cells. The potential of GBR and its neuroprotective mechanism in ameliorating oxidative stress-related cytotoxicity is therefore worth exploring further.

Journal ArticleDOI
TL;DR: The GR and GI of the different varieties of cooked milled and brown rice varied depending on its AC and DF contents, with Sinandomeng with the lowest AC having a high GI = 75, while PSBRc10 with the highest AC had a low GI = 50.
Abstract: Brown rice is a good source of dietary fibre (DF) and contains higher vitamins/minerals than milled rice. The study determined the effect of amylose content (AC) and DF on glucose response (GR) from different varieties of milled and brown rice. Milled and brown rice were used as test foods. They were fed to 9–10 human volunteers containing 50 g available carbohydrate after an overnight fast. GR and the glycemic index (GI) were determined. Results found that Sinandomeng with the lowest AC had a high GI = 75, while PSBRc10 with the highest AC had a low GI = 50. Sinandomeng with a low DF had GI = 75, while its brown rice had GI = 55. Brown rice (IR64) with 23% AC and DF of 2.5 g/100 g had low GI = 51. In conclusion, the GR and GI of the different varieties of cooked milled and brown rice varied depending on its AC and DF contents.

Journal ArticleDOI
TL;DR: Southwest China (especially Yunnan Province) is a geographical area where functional crop production is closely related to the origins of human evolution with implications for anticancer influence.
Abstract: Functional food for prevention of chronic diseases is one of this century's key global challenges. Cancer is not only the first or second leading cause of death in China and other countries across the world, but also has diet as one of the most important modifiable risk factors. Major dietary factors now known to promote cancer development are polished grain foods and low intake of fresh vegetables, with general importance for an unhealthy lifestyle and obesity. The strategies of cancer prevention in human being are increased consumption of functional foods like whole grains (brown rice, barley, and buckwheat) and by-products, as well some vegetables (bitter melon, garlic, onions, broccoli, and cabbage) and mushrooms (boletes and Tricholoma matsutake). In addition some beverages (green tea and coffee) may be protective. Southwest China (especially Yunnan Province) is a geographical area where functional crop production is closely related to the origins of human evolution with implications for anticancer influence.

Journal ArticleDOI
TL;DR: In this paper, the effects of EFW on microbial growth and gamma-aminobutyric acid (GABA) content, and the effect of available chlorine concentration (ACC) and presoaking and ultrasonic pretreatment in alkaline electrolyzed water (AlEW) on GABA accumulation during germination were studied.