scispace - formally typeset
Search or ask a question
Topic

Brown rice

About: Brown rice is a research topic. Over the lifetime, 8180 publications have been published within this topic receiving 81079 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation, indicating soil is still an important source for both inorganic mercury (IHG) and MeHg in rice plants.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the principal extraction and clean-up methodologies (e.g., liquid-liquid extraction, solid-phase extraction, pressurized liquid extraction, QuEChERS (quick, easy, cheap, effective, rugged and safe), gel-permeation chromatography and supercritical-fluid extraction) are compared.
Abstract: Rice consumption has increased worldwide over recent decades, as it has become one of the most common foods. Although the analysis of environmental samples coming from rice areas has been well documented, there is less information regarding the analysis of pesticide residues in rice-grain samples. Rice (paddy, brown and white) can be considered a complex matrix, leading to difficulties in the application of the different multiresidue methods described in the literature. This review addresses and compares the principal extraction and clean-up methodologies [e.g., liquid-liquid extraction, solid-phase extraction, pressurized-liquid extraction, QuEChERS (quick, easy, cheap, effective, rugged and safe), gel-permeation chromatography and supercritical-fluid extraction – with QuEChERS-based methods being the most frequently employed]. Traditionally, the determination of pesticide residues in rice has been based on gas chromatography with mass spectrometry (MS). But the application of new classes of pesticides has driven laboratories to increase the use of liquid chromatography with tandem MS. The limits of detection and quantification are in the ranges 0.09–90 μg/kg and 1–297 μg/kg, respectively, for the methodologies reported. These values agree with the current internationally-accepted maximum residue limits (MRLs). Based on the European Union (EU) database, more than 3000 analyses of pesticide residues in rice have been performed by official EU laboratories over the past decade. Of these, 6% reported pesticide residues above the MRLs. Physico-chemical properties can explain the occurrence of pesticides in rice commodities: lipophilic pesticides are frequently found in brown rice, whereas fungicides are mainly found in milled rice. Carbendazim, malathion, iprodione, tebuconazole, quinclorac and tricyclazole are the pesticides most frequently found in white rice, while buprofezin, hexaconazole, chlorpyrifos and edifenphos are most commonly found in paddy rice. Pesticide-residue concentrations can be affected during rice processing – with concentrations generally lower in the final products. However, few studies focusing on primary processing have addressed the setting of precise values applicable for the processing factors.

138 citations

Journal ArticleDOI
TL;DR: OsHMA5 was mainly expressed in the roots at the vegetative stage but also in nodes, peduncle, rachis, and husk at the reproductive stage, and was up-regulated by excess Cu but not by the deficiency of Cu and other metals, including zinc, iron, and manganese, at the Vegetative stage.
Abstract: Heavy metal-transporting P-type ATPase (HMA) has been implicated in the transport of heavy metals in plants. Here, we report the function and role of an uncharacterized member of HMA, OsHMA5 in rice (Oryza sativa). Knockout of OsHMA5 resulted in a decreased copper (Cu) concentration in the shoots but an increased Cu concentration in the roots at the vegetative stage. At the reproductive stage, the concentration of Cu in the brown rice was significantly lower in the mutants than in the wild-type rice; however, there was no difference in the concentrations of iron, manganese, and zinc between two independent mutants and the wild type. The Cu concentration of xylem sap was lower in the mutants than in the wild-type rice. OsHMA5 was mainly expressed in the roots at the vegetative stage but also in nodes, peduncle, rachis, and husk at the reproductive stage. The expression was up-regulated by excess Cu but not by the deficiency of Cu and other metals, including zinc, iron, and manganese, at the vegetative stage. Analysis of the transgenic rice carrying the OsHMA5 promoter fused with green fluorescent protein revealed that it was localized at the root pericycle cells and xylem region of diffuse vascular bundles in node I, vascular tissues of peduncle, rachis, and husk. Furthermore, immunostaining with an antibody against OsHMA5 revealed that it was localized to the plasma membrane. Expression of OsHMA5 in a Cu transport-defective mutant yeast (Saccharomyces cerevisiae) strain restored the growth. Taken together, OsHMA5 is involved in loading Cu to the xylem of the roots and other organs.

138 citations

Journal ArticleDOI
TL;DR: A novel mapping population consisting of 39 chromosome segment substitution lines (CSSLs) was used to locate the putative quantitative trait loci for cadmium (Cd) concentration in brown rice (Oryza sativa), and each of the CSSLs was nearly isogenic to Koshihikari, which is the most popular rice cultivar in Japan.
Abstract: A novel mapping population consisting of 39 chromosome segment substitution lines (CSSLs) was used to locate the putative quantitative trait loci (QTLs) for cadmium (Cd) concentration in brown rice (Oryza sativa). The mapping population carried a single chromosome segment of 'Kasalath' (indica) in each line overlapping with neighbouring segments in a 'Koshihikari' (japonica) genetic background. The parents and CSSLs were grown in pots filled with Cd-polluted soil until grain filling. The brown rice of three of the 39 CSSLs had significantly lower Cd concentrations than that of Koshihikari, and the brown rice of a further three had significantly higher concentrations. On the basis of graphical genotypes of CSSLs, putative QTLs controlling the Cd concentration in brown rice were detected on chromosomes 3, 6 and 8. Each of the CSSLs was nearly isogenic to Koshihikari, which is the most popular rice cultivar in Japan: they carried > 90% of the Koshihikari genetic background. Therefore, the development of a new Koshihikari with less Cd concentration in brown rice would be feasible in the near future.

137 citations

Journal ArticleDOI
TL;DR: The significant natural variability observed for gamma-oryzanol content and composition of steryl ferulates were shown to be influenced by environmental conditions but not by the degree of maturity of rice grains.
Abstract: The content of gamma-oryzanol and the composition of steryl ferulates were determined in brown rice of European origin using on-line coupled liquid chromatography-gas chromatography (LC-GC). Analysis of 30 brown rice samples of various cultivars, grown at different sites and in different seasons, revealed the gamma-oryzanol content to range from 26 to 63 mg/100 g. Cycloartenyl ferulate and 24-methylenecycloartanyl ferulate were the major components of gamma-oryzanol followed by campesteryl ferulate, campestanyl ferulate, and beta-sitosteryl ferulate. The proportions of individual steryl ferulates exhibited enormous variability. However, irrespectively of the great variations observed for single steryl ferulates, the proportions of the sum of 4,4'-dimethylsteryl ferulates (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate) and the sum of 4-desmethylsteryl ferulates (campesteryl ferulate, campestanyl ferulate, and beta-sitosteryl ferulate) were rather constant. The significant natural variability observed for gamma-oryzanol content and composition of steryl ferulates were shown to be influenced by environmental conditions but not by the degree of maturity of rice grains.

136 citations


Network Information
Related Topics (5)
Starch
50.2K papers, 1M citations
79% related
Fermentation
68.8K papers, 1.2M citations
77% related
DPPH
30.1K papers, 759.9K citations
76% related
Fertilizer
60.1K papers, 609.2K citations
76% related
Water content
49.8K papers, 1.1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023111
2022295
2021255
2020369
2019426
2018608