scispace - formally typeset
Search or ask a question
Topic

Buffer gas

About: Buffer gas is a research topic. Over the lifetime, 3565 publications have been published within this topic receiving 47283 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the rate coefficients for ternary association reactions of CH 3 + and CD 3 + with H 2, N 2, O 2 CO and CO 2 N 2 + with N 2 and D 2 have been measured within the temperature range 80-520 K in helium buffer gas.

74 citations

Patent
Takehiro Shindou1
05 Nov 2009
TL;DR: An ozone gas concentration measurement method that can easily measure the concentration of ozone gas is presented in this paper. But the method is not suitable for the measurement of the ozone gas from raw gas containing oxygen.
Abstract: An ozone gas concentration measurement method that can easily measure the concentration of ozone gas. A process gas containing ozone gas is produced from a raw gas containing oxygen gas. The number of moles of gas molecules contained in the process gas is measured. The concentration of the ozone gas contained in the process gas is calculated based on the number of moles of gas molecules contained in the process gas.

74 citations

Journal ArticleDOI
TL;DR: In this article, a two-stage buffer gas beam source was used for laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules.
Abstract: Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened "white-light" slowing and observe approximately 6x10^4 CaF molecules with velocities near 10\,m/s. CaF is a candidate for collisional studies in the mK regime. This work represents a significant step towards magneto-optical trapping of CaF.

73 citations

Patent
14 Mar 2000
TL;DR: In this paper, a pair of plasma pinch electrodes are located in a vacuum chamber and a blast shield positioned just beyond the location of the high density pinch provides a physical barrier which confines the pinch limiting its axial elongation.
Abstract: A high energy photon source. A pair of plasma pinch electrodes are located in a vacuum chamber. The chamber contains a working gas which includes a noble buffer gas and an active gas chosen to provide a desired spectral line. A pulse power source provides electrical pulses at voltages high enough to create electrical discharges between the electrodes to produce very high temperature, high density plasma pinches in the working gas providing radiation at the spectral line of the active gas. A blast shield positioned just beyond the location of the high density pinch provides a physical barrier which confines the pinch limiting its axial elongation. A small port is provided in the blast shield that permits the radiation but not the plasma to pass through the shield. In a preferred embodiment a surface of the shield facing the plasma is dome-shaped.

73 citations

Journal ArticleDOI
TL;DR: Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized and shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters.
Abstract: Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ∼1015–1016 cm−3 (Reynolds number ∼1–100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ∼1011ThO molecules in a single quantum state within a 1–3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s−1, internal temperature of 3.4 K, and brightness of 3 × 1011 ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.

72 citations


Network Information
Related Topics (5)
Excited state
102.2K papers, 2.2M citations
87% related
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Ion
107.5K papers, 2M citations
83% related
Electron
111.1K papers, 2.1M citations
83% related
Laser
353.1K papers, 4.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202264
202136
202062
201967
201891