scispace - formally typeset
Search or ask a question
Topic

Buffer solution

About: Buffer solution is a research topic. Over the lifetime, 6948 publications have been published within this topic receiving 112440 citations. The topic is also known as: pH buffer & buffer.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass- Aceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.
Abstract: High-strength bioactive glass-ceramic A-W was soaked in various acellular aqueous solutions different in ion concentrations and pH. After soaking for 7 and 30 days, surface structural changes of the glass-ceramic were investigated by means of Fourier transform infrared reflection spectroscopy, thin-film x-ray diffraction, and scanning electronmicroscopic observations, in comparison with in vivo surface structural changes. So-called Tris buffer solution, pure water buffered with trishydroxymethyl-aminomethane, which had been used by various workers as a "simulated body fluid," did not reproduce the in vivo surface structural changes, i.e., apatite formation on the surface. A solution, ion concentrations and pH of which are almost equal to those of the human blood plasma--i.e., Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl- 148.8, HCO3- 4.2 and PO4(2-) 1.0 mM and buffered at pH 7.25 with the trishydroxymethyl-aminomethane--most precisely reproduced in vivo surface structure change. This shows that careful selection of simulated body fluid is required for in vitro experiments. The results also support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass-ceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.

3,597 citations

Journal ArticleDOI
TL;DR: It was shown that decomposition was pH-dependent and occurred faster at neutral-basic conditions and vanillin, ferulic acid, feruloyl methane were identified as minor degradation products and the amount of vanillin increased with incubation time.

1,452 citations

Journal ArticleDOI
TL;DR: In this paper, the α-MnO2 powder was synthesized by a simple coprecipitation technique and tested as active electrode material for an electrochemical supercapacitor, showing that an average capacitance of 166 F/g can be reproducibly obtained within a voltage range −0.4/+0.5 V vs Hg/Hg2SO4 using a sweep rate of 2 mV/s.
Abstract: α-MnO2 was synthesized by a very simple coprecipitation technique and tested as active electrode material for an electrochemical supercapacitor. The powder presents a poorly crystallized cryptomelane phase with a chemical composition of K0.05MnO2H0.10·0.15H2O. Different aqueous electrolytes were tested including 0.1 M Na2SO4, 0.5 M K2HPO4/KH2PO4 buffer solution, 0.3 M H2SO4, and 1 M NaOH, but interesting pseudocapacitance behavior was only observed in the case of 0.1 M Na2SO4. Further testing using this electrolyte showed that an average capacitance of 166 F/g can be reproducibly obtained within a voltage range −0.4/+0.5 V vs Hg/Hg2SO4 using a sweep rate of 2 mV/s. This interesting value is mainly due to the chimisorption of Na+ ions and/or protons at the surface of the α-MnO2 electrode. Nearly all the Mn surface atoms are involved in the pseudocapacitive process. Therefore, the high specific capacitance seems to be related to the high surface area of the MnO2 powder rather than intercalation of Na+ ions ...

912 citations

Journal ArticleDOI
TL;DR: In this article, the use of total lipid phosphate as a measure of biomass was evaluated in soils with different organic matter content, and the two digestion methods showed a good linear correlation (r2 = 0.991).

831 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
85% related
Adsorption
226.4K papers, 5.9M citations
81% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Mass spectrometry
72.2K papers, 2M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202232
202185
2020151
2019220
2018245