scispace - formally typeset
Search or ask a question
Topic

Buffer solution

About: Buffer solution is a research topic. Over the lifetime, 6948 publications have been published within this topic receiving 112440 citations. The topic is also known as: pH buffer & buffer.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a solution processed organic light emitting diodes (OLEDs) comprising small molecule, blue phosphorescent emitter layers from bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium doped 4,4′,4″-tris(carbazol-9-yl)-triphenylamine and molybdenum trioxide (MoO3) anode buffer layers are presented.

53 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS).

53 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol (2-6-DNP) has been determined in aqueous solutions from 25 to 175 °C using spectrophotometric measurements.
Abstract: The temperature dependence of the dissociation constants for formic acid and 2,6-dinitrophenol (2,6-DNP) has been determined in aqueous solutions from 25 to 175 °C using spectrophotometric measurements. The optical indicator 2,6-DNP was employed to measure the pH of a buffer solution by deconvolution of absorption spectra of 2,6-DNP at various temperatures. First, using the temperature dependence of pKa for acetic acid, pKi of 2,6-DNP were determined in acetate buffer solutions as a function of temperature. The results were then used to study the ionization reaction of formic acid at elevated temperature. Measured values of pKa for formic acid were fitted to a function of temperature, which was derived by assuming that ΔCop is a non-zero constant. The result for formic acid was given by pKa=– 57.528 + 2773.9/T+ 9.1232 ln T where T is absolute temperature. Additionally, thermodynamic functions of formic acid were determined from the temperature dependence of pKa and compared with those obtained from other methods. The isocoulombic reactions for formic acid and 2,6-DNP were considered to predict the temperature dependence of pKa by the extrapolation of – log KOH values to higher temperatures.

53 citations

Journal ArticleDOI
TL;DR: In this article, reaction rate constants for the hydrolysis of organic esters and amides were determined at temperatures of 100-240°C in aqueous solutions buffered at pH values between 5.5 and 7.3.
Abstract: Reaction rate constants for the hydrolysis of organic esters and amides were determined at temperatures of 100–240°C in aqueous solutions buffered at pH values between 5.5 and 7.3. Experiments are modeled assuming alkaline hydrolysis with a thermodynamic solution model included to account for the temperature dependence of hydroxide ion concentration. In most cases, the ester hydrolysis second order rate constants agree well with published values from experiments in strongly basic solutions at pH values from 11 to 14 and temperatures from 25–80°C, despite the large extrapolations required to compare the data sets. The amide hydrolysis rate constants are about one order of magnitude higher than the extrapolated results from other investigators, but the reaction rate increased proportionally with hydroxide ion concentration, suggesting that an alkaline hydrolysis mechanism is also appropriate. These data establish the validity of the alkaline hydrolysis mechanism and can be used to predict hydrolysis reaction rates in neutrally-buffered solutions such as many groundwater and geothermal fluids.

53 citations

Journal ArticleDOI
TL;DR: The immobilized HRP is an effective catalyst for the oxidative polymerization of aniline in the presence of hydrogen peroxide at room temperature, and the overall reaction is sensitive to solution pH and hydrogenperoxide concentration.

53 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
85% related
Adsorption
226.4K papers, 5.9M citations
81% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Mass spectrometry
72.2K papers, 2M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202232
202185
2020151
2019220
2018245