scispace - formally typeset
Search or ask a question
Topic

Buoyancy

About: Buoyancy is a research topic. Over the lifetime, 14652 publications have been published within this topic receiving 273183 citations. The topic is also known as: upthrust.


Papers
More filters
Journal ArticleDOI
Abstract: The formation of gas bubbles and their subsequent rise due to buoyancy are very important fundamental phenomena that contribute significantly to the hydrodynamics in gas−liquid reactors. The rise o...

657 citations

Journal ArticleDOI
TL;DR: In this article, a simple model is given that describes the response of the upper ocean to an imposed wind stress, which is taken to mix thoroughly a layer of depth h, and to erode the stably stratified fluid below.
Abstract: A simple model is given that describes the response of the upper ocean to an imposed wind stress. The stress drives both mean and turbulent flow near the surface, which is taken to mix thoroughly a layer of depth h, and to erode the stably stratified fluid below. A marginal stability criterion based on a Froude number is used to close the problem, and it is suggested that the mean momentum has a strong role in the mixing process. The initial deepening is predicted to obey where u. is the friction velocity of the imposed stress, N the ambient buoyancy frequency, and t the time. After one-half inertial period the deepening is arrested by rotadeon at a depth h = 22/4 u.{(Nf)+ where f is the Coriolis frequency. The flow is then a “mixed Ekman” layer, with strong inertial oscillations superimposed on it. Three quarters of the mean energy of the deepening layer is found to be kinetic, and only one-quarter potential. Heating and cooling are included in the model, but stress dominates for time-scales of ...

632 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used large-eddy simulations (LES) for zero mean horizontal flow in the convective boundary layer (CBL) of a Boussinesq fluid, and found that the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments.
Abstract: Turbulence in the convective boundary layer (CBL) uniformly heated from below and topped by a layer of uniformly stratified fluid is investigated for zero mean horizontal flow using large-eddy simulations (LES). The Rayleigh number is effectively infinite, the Froude number of the stable layer is 0.09 and the surface roughness height relative to the height of the convective layer is varied between 10−6 and 10−2. The LES uses a finite-difference method to integrate the three-dimensional grid-volume-averaged Navier–Stokes equations for a Boussinesq fluid. Subgrid-scale (SGS) fluxes are determined from algebraically approximated second-order closure (SOC) transport equations for which all essential coefficients are determined from the inertial-range theory. The surface boundary condition uses the Monin–Obukhov relationships. A radiation boundary condition at the top of the computational domain prevents spurious reflections of gravity waves. The simulation uses 160 × 160 × 48 grid cells. In the asymptotic state, the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments. We found less agreement with respect to horizontal velocity fluctuations, pressure fluctuations and dissipation rates, which previous investigations tend to overestimate. Horizontal spectra exhibit an inertial subrange. The entrainment heat flux at the top of the CBL is carried by cold updraughts and warm downdraughts in the form of wisps at scales comparable with the height of the boundary layer. Plots of instantaneous flow fields show a spoke pattern in the lower quarter of the CBL which feeds large-scale updraughts penetrating into the stable layer aloft. The spoke pattern has also been found in a few previous investigations. Small-scale plumes near the surface and remote from strong updraughts do not merge together but decay while rising through large-scale downdraughts. The structure of updraughts and downdraughts is identified by three-dimensional correlation functions and conditionally averaged fields. The mean circulation extends vertically over the whole boundary layer. We find that updraughts are composed of quasi-steady large-scale plumes together with transient rising thermals which grow in size by lateral entrainment. The skewness of the vertical velocity fluctuations is generally positive but becomes negative in the lowest mesh cells when the dissipation rate exceeds the production rate due to buoyancy near the surface, as is the case for very rough surfaces. The LES results are used to determine the root-mean-square value of the surface friction velocity and the mean temperature difference between the surface and the mixed layer as a function of the roughness height. The results corroborate a simple model of the heat transfer in the surface layer.

612 citations

Journal ArticleDOI
TL;DR: Using the geometry of a sessile drop, in suspensions of Bacillus subtilis the self-organized generation of a persistent hydrodynamic vortex is demonstrated that traps cells near the contact line and enhances uptake of oxygen into the suspension.
Abstract: Aerobic bacteria often live in thin fluid layers near solid–air–water contact lines, in which the biology of chemotaxis, metabolism, and cell–cell signaling is intimately connected to the physics of buoyancy, diffusion, and mixing. Using the geometry of a sessile drop, we demonstrate in suspensions of Bacillus subtilis the self-organized generation of a persistent hydrodynamic vortex that traps cells near the contact line. Arising from upward oxygentaxis and downward gravitational forcing, these dynamics are related to the Boycott effect in sedimentation and are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics. The vortex is shown to advectively enhance uptake of oxygen into the suspension, and the wedge geometry leads to a singularity in the chemotactic dynamics near the contact line.

610 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that the gravity current can pass through three states: a slumping phase, a viscous phase, and a purely inertial phase, where the buoyancy force of the intruding fluid is balanced by the inertial force.
Abstract: Experimental results for the release of a fixed volume of one homogeneous fluid into another of slightly different density are presented, From these results and those obtained by previous experiments, it is argued that the resulting gravity current can pass through three states. There is first a slumping phase, during which the current is retarded by the counterflow in the fluidinto which it is issuing. The current remains in this slumping phase until the depth ratio of current to intruded fluid is reduced to less than about 0,075. This may be followed by a (previously investigated) purely inertial phase, wherein the buoyancy force of the intruding fluid is balanced by the inertial force. Motion in the surrounding fluid plays a negligible role in this phase. There then follows a viscous phase, wherein the buoyancy force is balanced by viscous forces. It is argued and confirmed by experiment that the inertial phase is absent if viscous effects become important before the slumping phase has been completed. R’elationships between spreading distance and time for each phase are obtained for all three phases for both two-dimensional and axisymmetric geometries. Some consequences of the retardation of the gravity current during the slumping phase are discussed.

592 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
90% related
Reynolds number
68.4K papers, 1.6M citations
90% related
Boundary layer
64.9K papers, 1.4M citations
89% related
Laminar flow
56K papers, 1.2M citations
88% related
Heat transfer
181.7K papers, 2.9M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023736
20221,394
2021530
2020611
2019657
2018601