scispace - formally typeset
Search or ask a question
Topic

Burn rate (chemistry)

About: Burn rate (chemistry) is a research topic. Over the lifetime, 847 publications have been published within this topic receiving 8908 citations. The topic is also known as: Burning rate.


Papers
More filters
Patent
07 Oct 1997
TL;DR: In this paper, an end-burning pyrotechnic charge (60) is in the chamber (50) in the housing (30) for, upon ignition, producing inflation fluid for inflating an inflatable device.
Abstract: An inflator (10) includes a housing (30) defining a chamber (50). An end-burning pyrotechnic charge (60) is in the chamber (50) in the housing (30) for, upon ignition, producing inflation fluid for inflating an inflatable device. The charge (60) has a first predetermined burn rate at a first location along the length of the chamber (50) and a second predetermined burn rate at a second location along the length of the chamber spaced apart from the first location. The second predetermined burn rate is different from the first predetermined burn rate. The inflator (10) includes an initiator (112) for igniting the charge (60), and portions (34, 90, 110) for directing inflation fluid from the chamber (50) to the inflatable device.

26 citations

Journal ArticleDOI
15 Apr 2015-Fuel
TL;DR: In this paper, double base solid propellants of spherical geometry within the ranges of 300-425, 425-500, 500-600, 600-710 and 710-850μm in diameter and temperatures of −60, −40, −20, 0, 20, 40 and 60 ǫ c were investigated in terms of the effects of grain size and temperature on burn rate, internal barrel pressure and bullet velocity.

25 citations

Patent
11 Jan 1984
TL;DR: In this paper, it was shown that an end burning gas generator can be caused to produce a substantially uniform pressure trace throughout its burn time if the interface between the grain and its container has a length greater than the axial length of the grain.
Abstract: End burning gas generators for use either as propulsion systems or means for generating large volume of gases for various purposes such as the generation of the fuel for a ducted rocket engine, the rapid inflation of air bags for personal protection or recovery of submersed items or the expulsion of projectiles from subsurface launch tubes are currently widely utilized. End burning gas generator grains are ignited at one end of a generally cylindrical charge mounted within a combustion chamber which is fixed with a suitable exhaust means. For many of the applications described above, it is desirable that the gas generator burn in a uniform manner such that a constant volume of gas is generated per unit of time so that the chamber pressure and the mass flow rate of gas remain constant. It has been observed, however, that rather than regressing at a uniform rate, the propellant grain burns in a manner which produces a convex cone, the angle of which increases with time thereby causing the burning surface to increase with time and to result in a progressive pressure trace within the combustion chamber and a corresponding continually increasing mass flow rate through the nozzle. According to this invention, it has been found that an end burning propellant grain can be caused to produce a substantially uniform pressure trace throughout its burn time if the interface between the grain and its container has a length greater than the axial length of the grain. The relationship between the length of the interface and the length of the grain is selected to compensate for the increased burning rate which is observed to occur at the interface and which produces the coning effect. The increased interfacial length can be easily obtained by the use of the corrugated member between the propellant grain and the case, the length across the corrugations providing the increase over the axial length of the grain. For typical gas generator propellant compositions, it has been found that if the interface is between 1.4 and 1.6 times the axial length of the grain that a substantially uniform pressure trace can be obtained. The corrugated interface also acts to improve the bond strength between the grain and the case.

25 citations

Journal ArticleDOI
TL;DR: A solid rocket propellant based on GAP binder plasticized with nitrate esters and oxidized with a mixture of ammonium nitrate and triaminoguanidine nitrate (TAGN) was formulated and characterized as discussed by the authors.
Abstract: A solid rocket propellant based on glycidyl azide polymer (GAP) binder plasticized with nitrate esters and oxidized with a mixture of ammonium nitrate (AN) and triaminoguanidine nitrate (TAGN) was formulated and characterized. Non-lead ballistic modifiers were also included in order to obtain a propellant with non-acidic and non-toxic exhaust. This propellant was found to exhibit a burning rate approximately twice that of standard GAP/AN propellants. The exponent of the propellant is high compared to commonly used composite propellants but is still in the useable range at pressures below 13.8 MPa. This propellant may present a good compromise for applications requiring intermediate burn rate and impulse combined with low-smoke and non-toxic exhaust.

25 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
86% related
Internal combustion engine
130.5K papers, 1M citations
72% related
Heat transfer
181.7K papers, 2.9M citations
71% related
Reynolds number
68.4K papers, 1.6M citations
71% related
Laminar flow
56K papers, 1.2M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202220
202116
202015
201918
201811