scispace - formally typeset
Search or ask a question
Topic

Buthionine sulfoximine

About: Buthionine sulfoximine is a research topic. Over the lifetime, 2238 publications have been published within this topic receiving 118767 citations. The topic is also known as: 2-amino-4-(S-butylsulfonimidoyl)butyric acid & 2-amino-4-(S-butylsulfonimidoyl)butanoic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.
Abstract: A method for the analysis of nanogram quantities of glutathione has been developed which is based on the catalytic action of GSH or GSSG in the reduction of Ellman reagent (DTNB) by a mixture of TPNH and yeast glutathione reductase. Unlike previous methods of analysis the procedure described here effectively measures the total glutathione (GSH + GSSG) content of unknown mixtures and is not subject to appreciable interference by the presence of other thiol components. It is suggested that the catalytic action of glutathione in this system resides in the continual enzymic regeneration of GSH, present initially or formed enzymically from GSSG, following its interaction with the sulfhydryl reagent. The sensitivity of the method is such as to permit the determination of total glutathione in extracellular tissue fluids such as plasma, saliva, and urine normally containing very low levels of this material, essentially without pretreatment of the sample. The same is true for glutathione determinations of whole blood, in which the preliminary procedure is confined to the preparation of a 1:100 hemolyzate from as little as 10 μl of sample. Following published procedures, the pretreatment of tissue extracts with NEM to form an enzymically inactive complex with free GSH allowed the determination of the low levels of oxidized glutathione normally present therein. The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.

5,900 citations

Journal ArticleDOI
TL;DR: Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity.
Abstract: Ferroptosis is a recently recognized form of regulated cell death. It is characterized morphologically by the presence of smaller than normal mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, and outer mitochondrial membrane rupture. It can be induced by experimental compounds (e.g., erastin, Ras-selective lethal small molecule 3, and buthionine sulfoximine) or clinical drugs (e.g., sulfasalazine, sorafenib, and artesunate) in cancer cells and certain normal cells (e.g., kidney tubule cells, neurons, fibroblasts, and T cells). Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, upregulation of endoplasmic reticulum stress, and inhibition of cystine/glutamate antiporter is involved in the induction of ferroptosis. This process is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism and can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and desferrioxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin, liproxstatin, and zileuton). Glutathione peroxidase 4, heat shock protein beta-1, and nuclear factor erythroid 2-related factor 2 function as negative regulators of ferroptosis by limiting ROS production and reducing cellular iron uptake, respectively. In contrast, NADPH oxidase and p53 (especially acetylation-defective mutant p53) act as positive regulators of ferroptosis by promotion of ROS production and inhibition of expression of SLC7A11 (a specific light-chain subunit of the cystine/glutamate antiporter), respectively. Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity. In this review, we summarize the regulation mechanisms and signaling pathways of ferroptosis and discuss the role of ferroptosis in disease.

1,871 citations

Journal ArticleDOI
19 Nov 1993-Science
TL;DR: The proto-oncogene bcl-2 inhibits apoptotic and necrotic neural cell death by decreasing the net cellular generation of reactive oxygen species and lipid peroxides as discussed by the authors.
Abstract: The proto-oncogene bcl-2 inhibits apoptotic and necrotic neural cell death. Expression of Bcl-2 in the GT1-7 neural cell line prevented death as a result of glutathione depletion. Intracellular reactive oxygen species and lipid peroxides rose rapidly in control cells depleted of glutathione, whereas cells expressing Bcl-2 displayed a blunted increase and complete survival. Modulation of the increase in reactive oxygen species influenced the degree of cell death. Yeast mutants null for superoxide dismutase were partially rescued by expression of Bcl-2. Thus, Bcl-2 prevents cell death by decreasing the net cellular generation of reactive oxygen species.

1,698 citations

Journal ArticleDOI
TL;DR: The findings support the conclusion that the S-alkyl moiety of the sulfoximine binds at the enzyme site that normally binds the acceptor amino acid and increases in a manner which is parallel to those of the corresponding isosteric accepter amino acid substrates, i.e. glycine, alanine, and alpha-aminobutyrate.
Abstract: Buthionine sulfoximine (S-n-butyl homocysteine sulfoximine), the most potent of a series of analogs of methionine sulfoximine thus far studied (Griffith, O.W., Anderson, M.E., and Meister, A. (1979) J. Biol. Chem. 254, 1205-1210), inhibited gamma-glutamylcysteine synthetase about 20 times more effectively than did prothionine sulfoximine and at least 100 times more effectively than methionine sulfoximine. The findings support the conclusion that the S-alkyl moiety of the sulfoximine binds at the enzyme site that normally binds the acceptor amino acid. Thus, the affinity of the enzyme for the S-ethyl, S-n-propyl, and S-n-butyl sulfoximines increases in a manner which is parallel to those of the corresponding isosteric acceptor amino acid substrates, i.e. glycine, alanine, and alpha-aminobutyrate. Buthionine sulfoximine did not inhibit glutamine synthetase detectably, nor did it produce convulsions when injected into mice. Injection of buthionine sulfoximine into mice decreased the level of glutathione in the kidney to a greater extent (less than 20% of the control level) than found previously after giving prothionine sulfoximine. alpha-Methyl buthionine sulfoximine was also prepared and found to be almost as effective as buthionine sulfoximine; this compound would not be expected to undergo substantial degradative metabolism. Buthionine sulfoximine and alpha-methyl buthionine sulfoximine may be useful agents for inhibition of glutathione synthesis in various experimental systems.

1,626 citations

Journal ArticleDOI
TL;DR: Because GSH plays a critical role in cellular defenses against electrophiles, oxidative stress and nitrosating species, pharmacologic manipulation of GSH synthesis has received much attention.
Abstract: Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH) is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The intracellular GSH concentration, typically 1-8 mM, reflects a dynamic balance between the rate of GSH synthesis and the combined rate of GSH consumption within the cell and loss through efflux. The gamma-GCS reaction is rate limiting for GSH synthesis, and regulation of gamma-GCS expression and activity is critical for GSH homeostasis. Transcription of the gamma-GCS subunit genes is controlled by a variety of factors through mechanisms that are not yet fully elucidated. Glutathione synthesis is also modulated by the availability of gamma-GCS substrates, primarily L-cysteine, by feedback inhibition of gamma-GCS by GSH, and by covalent inhibition of gamma-GCS by phosphorylation or nitrosation. Because GSH plays a critical role in cellular defenses against electrophiles, oxidative stress and nitrosating species, pharmacologic manipulation of GSH synthesis has received much attention. Administration of L-cysteine precursors and other strategies allow GSH levels to be maintained under conditions that would otherwise result in GSH depletion and cytotoxicity. Conversely, inhibitors of gamma-GCS have been used to deplete GSH as a strategy for increasing the sensitivity of tumors and parasites to certain therapeutic interventions.

1,120 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Phosphorylation
69.3K papers, 3.8M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202235
202131
202021
201926
201827