scispace - formally typeset
Search or ask a question
Topic

Butterworth filter

About: Butterworth filter is a research topic. Over the lifetime, 6187 publications have been published within this topic receiving 69070 citations.


Papers
More filters
Proceedings ArticleDOI
16 Jun 2005
TL;DR: In this article, the authors proposed a novel method for LCL type filter design, which makes the task very convenient and can be easily done by solving the equations by step-by-step design procedure, which is verified on the experimental set-up.
Abstract: LCL type filter becomes more and more attractive as utility interface for grid-connected voltage source rectifier (VSR). Compared to L type filter, LCL type filter can render better switching harmonics attenuation using lower inductance, which makes it suitable for higher power applications. However, LCL filter design is complex and needs to consider many constraints, such as current ripple through inductors, total impedance of the filter, switching harmonic attenuation, resonance phenomenon and reactive power absorbed by filter capacitors, etc. Try-error method is inconvenient and time-consuming. This paper proposes a novel method for LCL type filter design, which makes the task very convenient. At first, the total inductance should be determined according to current ripple requirement. With filter capacitor insertion, total inductance is split into two parts. A set of equations is obtained to represent the relationship between the impedances at switching frequency with consideration of switching harmonic attenuation and reactive power constrains. The other constraints are considered as the limitation for solvability condition for equations. So the overall design can be easily done by solving the equations. Step-by-step design procedure is described as a design example, which is verified on the experimental set-up

87 citations

Journal ArticleDOI
TL;DR: In this article, a first-order voltage-mode all-pass filter with high-input and low-output impedances is described, which consists of only one grounded capacitor and one active element.
Abstract: A new circuit topology of first-order voltage-mode all-pass filter providing high-input and low-output impedances is described. The filter consists of only one grounded capacitor and one active element, namely VD-DIBA (Voltage Differencing-Differential Input Buffered Amplifier), with the possibility of electronically tuning the natural frequency. The filter is assembled from commercial integrated circuits, and the frequency responses measured are compared with the theoretical characteristics.

87 citations

Journal ArticleDOI
TL;DR: In this paper, a third-order G/sub m/-C Butterworth low-pass filter is proposed for zero-IF radio receiver architecture for multimode mobile communications, with a cutoff frequency range from 50 kHz to 2.2 MHz.
Abstract: A third-order G/sub m/-C Butterworth low-pass filter implementing G/sub m/-tuning and G/sub m/-switching to maximize the tuning range is described. This filter is intended to be used as a channel-selection/anti-aliasing filter in the analog baseband part of a zero-IF radio receiver architecture for multimode mobile communications. Its G/sub m/-switching feature allows extending the tuning range and adapting the power consumption. The filter's cutoff frequency ranges from 50 kHz to 2.2 MHz. An Input IP3 of up to +18 dBV/sub p/ is achieved, for a total worst-case power consumption of 7.3 mW for both I and Q paths, and an effective area of less than 0.5 mm/sup 2/ in a 0.25-/spl mu/m SiGe BiCMOS process. A new figure of merit is introduced for comparison of published low-pass tunable filters including noise, linearity, and tuning range.

87 citations

Journal ArticleDOI
TL;DR: In this article, a switchable bandpass filter with a wide stopband rejection was proposed, where the loaded diodes were used to switch the resonance conditions of the stepped-impedance resonators.
Abstract: Stepped-impedance resonators with diodes loaded at one end are used to develop switchable bandpass filters in this paper. The loaded diodes are used to switch the resonance conditions of the stepped-impedance resonators. The equations for resonance conditions of the stepped-impedance resonators with different loads at one end are derived and discussed. With these derived equations, the switchable filters can be easily designed and synthesized using the coupled-resonator filter theory. When the switchable filter is switched on, a bandpass filter response with a wide stopband rejection is achieved by making the on-state coupled resonators have the same fundamental resonant frequency, but different higher order resonant frequencies. When switched off, a high and wideband isolation is obtained by properly misaligning the resonant modes of the off-state resonators. The design concept is demonstrated by two single-pole-single-throw fourth-order Butterworth-type switchable microstrip bandpass filters, which utilize two and three switched stepped-impedance resonators, respectively. Finally, a compact single-pole-double-throw switchable microstrip bandpass filter using common resonators is demonstrated for wireless communication applications

86 citations

Journal ArticleDOI
TL;DR: This paper presents a nanopower programmable bandpass filter suitable to process biomedical signals and proves to be very robust to mismatch and process variations even when it has been implemented using MOS transistors biased in the weak inversion region.
Abstract: This paper presents a nanopower programmable bandpass filter suitable to process biomedical signals. The filter proves to be very robust to mismatch and process variations even when it has been implemented using MOS transistors biased in the weak inversion region. The paper analyses design issues associated to matching and process variations for the chosen filter topology and constituent transconductor block. The design equations justify the choice of both when the main constraints are robustness and power. The sixth order, bandpass filter prototype consumes 70 nW of power, with a dynamic range greater than 47 dB and operates at 1-V power supply. The filter was designed as part of a wearable breathing detector but its wide programmability range makes it suitable for many other biomedical sensor interfaces that require steep low frequency rejection band as well as ultralow power and low voltage operation.

85 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
85% related
Antenna (radio)
208K papers, 1.8M citations
83% related
CMOS
81.3K papers, 1.1M citations
82% related
Communications system
88.1K papers, 1M citations
81% related
Wireless
133.4K papers, 1.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202282
202140
202059
201941
201864