scispace - formally typeset
Search or ask a question
Topic

Cache-only memory architecture

About: Cache-only memory architecture is a research topic. Over the lifetime, 5038 publications have been published within this topic receiving 114066 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Specific aspects of cache memories investigated include: the cache fetch algorithm (demand versus prefetch), the placement and replacement algorithms, line size, store-through versus copy-back updating of main memory, cold-start versus warm-start miss ratios, mulhcache consistency, the effect of input /output through the cache, the behavior of split data/instruction caches, and cache size.
Abstract: design issues. Specific aspects of cache memories tha t are investigated include: the cache fetch algorithm (demand versus prefetch), the placement and replacement algorithms, line size, store-through versus copy-back updating of main memory, cold-start versus warm-start miss ratios, mulhcache consistency, the effect of input /output through the cache, the behavior of split data/instruction caches, and cache size. Our discussion includes other aspects of memory system architecture, including translation lookaside buffers. Throughout the paper, we use as examples the implementation of the cache in the Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780. An extensive bibliography is provided.

1,593 citations

Proceedings ArticleDOI

[...]

20 Jun 2009
TL;DR: This paper analyzes a PCM-based hybrid main memory system using an architecture level model of PCM and proposes simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.
Abstract: The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. An alternative memory technology that uses resistance contrast in phase-change materials is being actively investigated in the circuits community. Phase Change Memory (PCM) devices offer more density relative to DRAM, and can help increase main memory capacity of future systems while remaining within the cost and power constraints.In this paper, we analyze a PCM-based hybrid main memory system using an architecture level model of PCM.We explore the trade-offs for a main memory system consisting of PCMstorage coupled with a small DRAM buffer. Such an architecture has the latency benefits of DRAM and the capacity benefits of PCM. Our evaluations for a baseline system of 16-cores with 8GB DRAM show that, on average, PCM can reduce page faults by 5X and provide a speedup of 3X. As PCM is projected to have limited write endurance, we also propose simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.

1,378 citations

Proceedings ArticleDOI

[...]

01 May 1990
TL;DR: A new model of memory consistency, called release consistency, that allows for more buffering and pipelining than previously proposed models is introduced and is shown to be equivalent to the sequential consistency model for parallel programs with sufficient synchronization.
Abstract: Scalable shared-memory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.This paper introduces a new model of memory consistency, called release consistency, that allows for more buffering and pipelining than previously proposed models. A framework for classifying shared accesses and reasoning about event ordering is developed. The release consistency model is shown to be equivalent to the sequential consistency model for parallel programs with sufficient synchronization. Possible performance gains from the less strict constraints of the release consistency model are explored. Finally, practical implementation issues are discussed, concentrating on issues relevant to scalable architectures.

1,159 citations

Proceedings ArticleDOI

[...]

01 May 2000
TL;DR: This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure.
Abstract: The bandwidth and latency of a memory system are strongly dependent on the manner in which accesses interact with the “3-D” structure of banks, rows, and columns characteristic of contemporary DRAM chips. There is nearly an order of magnitude difference in bandwidth between successive references to different columns within a row and different rows within a bank. This paper introduces memory access scheduling, a technique that improves the performance of a memory system by reordering memory references to exploit locality within the 3-D memory structure. Conservative reordering, in which the first ready reference in a sequence is performed, improves bandwidth by 40% for traces from five media benchmarks. Aggressive reordering, in which operations are scheduled to optimize memory bandwidth, improves bandwidth by 93% for the same set of applications. Memory access scheduling is particularly important for media processors where it enables the processor to make the most efficient use of scarce memory bandwidth.

985 citations

Proceedings ArticleDOI

[...]

01 Apr 1991
TL;DR: It is shown that the degree of cache interference is highly sensitive to the stride of data accesses and the size of the blocks, and can cause wide variations in machine performance for different matrix sizes.
Abstract: Blocking is a well-known optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This paper presents cache performance data for blocked programs and evaluates several optimization to improve this performance. The data is obtained by a theoretical model of data conflicts in the cache, which has been validated by large amounts of simulation. We show that the degree of cache interference is highly sensitive to the stride of data accesses and the size of the blocks, and can cause wide variations in machine performance for different matrix sizes. The conventional wisdom of frying to use the entire cache, or even a fixed fraction of the cache, is incorrect. If a fixed block size is used for a given cache size, the block size that minimizes the expected number of cache misses is very small. Tailoring the block size according to the matrix size and cache parameters can improve the average performance and reduce the variance in performance for different matrix sizes. Finally, whenever possible, it is beneficial to copy non-contiguous reused data into consecutive locations.

958 citations

Network Information
Related Topics (5)
Cache
59.1K papers, 976.6K citations
90% related
Benchmark (computing)
19.6K papers, 419.1K citations
86% related
Compiler
26.3K papers, 578.5K citations
86% related
Parallel algorithm
23.6K papers, 452.6K citations
85% related
Scalability
50.9K papers, 931.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20228
202119
202026
201928
201838