scispace - formally typeset
Search or ask a question
Topic

Cadmium telluride photovoltaics

About: Cadmium telluride photovoltaics is a research topic. Over the lifetime, 6248 publications have been published within this topic receiving 107572 citations. The topic is also known as: CdTe.


Papers
More filters
Journal ArticleDOI
TL;DR: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4.
Abstract: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

1,615 citations

Journal ArticleDOI
24 May 2012-Nature
TL;DR: It is shown that the solution-processable p-type direct bandgap semiconductor CsSnI3 can be used for hole conduction in lieu of a liquid electrolyte and enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.
Abstract: Dye-sensitized solar cells based on titanium dioxide (TiO(2)) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn(1-x)Ga(x)Se(2) (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI(3) can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI(2.95)F(0.05) doped with SnF(2), nanoporous TiO(2) and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI(3) enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.

1,571 citations

Journal ArticleDOI
TL;DR: In this paper, an overview is given of various electronic effects present in polycrystalline thin film solar cells, which do not occur in standard crystalline Si solar cells and how these effects are treated numerically in a numerical solar cell simulation tool, SCAPS.

1,519 citations

Journal ArticleDOI
TL;DR: In this paper, the authors improved the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide pervskite.
Abstract: As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm2 tandem solar cell with a perovskite device that withstands damp heat tests.

1,163 citations

Journal ArticleDOI
TL;DR: In this article, the structure of an interdigitated back contact was adopted with crystalline silicon heterojunction solar cells to reduce optical loss from a front grid electrode, a transparent conducting oxide (TCO) layer, and a-Si:H layers as an approach for exceeding the conversion efficiency of 25%.
Abstract: The crystalline silicon heterojunction structure adopted in photovoltaic modules commercialized as Panasonic's HIT has significantly reduced recombination loss, resulting in greater conversion efficiency. The structure of an interdigitated back contact was adopted with our crystalline silicon heterojunction solar cells to reduce optical loss from a front grid electrode, a transparent conducting oxide (TCO) layer, and a-Si:H layers as an approach for exceeding the conversion efficiency of 25%. As a result of the improved short-circuit current (J sc ), we achieved the world's highest efficiency of 25.6% for crystalline silicon-based solar cells under 1-sun illumination (designated area: 143.7 cm 2 ).

1,061 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
92% related
Band gap
86.8K papers, 2.2M citations
92% related
Amorphous solid
117K papers, 2.2M citations
89% related
Oxide
213.4K papers, 3.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022525
2021206
2020217
2019266
2018271