scispace - formally typeset
Search or ask a question
Topic

Calibration curve

About: Calibration curve is a research topic. Over the lifetime, 6552 publications have been published within this topic receiving 95128 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the main components of the uncertainty in turbidity measurements with a special focus on reproducibility, and guidelines are provided for improving the Reproducibility of measurements in wastewater relying on proper calibration procedures.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used inductively coupled plasma mass spectrometry (PCS) for the direct analysis of silane for both the measurement and indentification of elemental impurities at the sub-parts per billion level.
Abstract: Silane is the main gas used in the field of electronics to produce compounds of silicon. The direct analysis of silane by inductively coupled plasma mass spectrometry has been found to be a practical proposition for both the measurement and indentification of elemental impurities at the sub-parts per billion level. Several steps, however, need to be taken to optimise commercial instrumentation further for this task. Firstly, in order to minimise the amount of matrix material being deposited on the sampler orifice, an alloy sample cone was used which operated at a higher temperature than that of the commercially available nickel cones; additionally, the optimum carrier gas flow-rate with silane was found to be significantly lower than that required to achieve maximum sensitivity in argon alone. This too reduced sample deposition around the orifice. A further increase in sensitivity was achieved when the argon carrier gas was supplemented by the addition of hydrogen; the detection limits for 75As and 127l were 0.55 and 0.65 p.p.b., respectively, with a precision of 2–5%. In order to quantify impurities in the silane two techniques were employed. The first used the silicon matrix as an internal standard and the second involved direct comparison with a calibration graph obtained by the addition of impurities to the silane.

28 citations

Journal ArticleDOI
TL;DR: In this paper, a new method for the calculation of coincidence summing out corrections appropriate for γ-spectrometry measurements in the Ge well-type detector geometry is proposed, based on a simple formula for the total efficiency of the detector, using an exact analytical relation for the mean detector thickness, combined with approximate formulas describing the interactions in the source and in the materials interposed between the sources and the detector.
Abstract: A new method for the calculation of coincidence summing out corrections appropriate for γ-spectrometry measurements in the Ge well-type detector geometry is proposed. The method is based on a simple formula for the total efficiency of the detector, using an exact analytical relation for the mean detector thickness, combined with approximate formulas describing the interactions in the source and in the materials interposed between the source and the detector. The method can be easily applied for establishing the corrected, nuclide independent, efficiency calibration curves of Ge well-type detectors using experimental calibration data obtained with the common mixed γ-ray standard source containing 60 Co and 88 Y.

28 citations

Journal ArticleDOI
TL;DR: In this paper, a simple wetchemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment.
Abstract: A simple wet-chemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment. The synthesized ZnO·V2O5 NRs were characterized using typical methods, including UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). The D-glucose (D-GLC) sensor was fabricated with modification of a slight coating of nanorods (NRs) onto a flat glassy carbon electrode (GCE). The analytical performances, such as the sensitivity, limit of quantification (LOQ), limit of detection (LOD), linear dynamic range (LDR), and durability, of the proposed D-GLC sensor were acquired by a dependable current–voltage (I–V) process. A calibration curve of the GCE/ZnO·V2O5 NRs/Nf sensor was plotted at +1.0 V over a broad range of D-GLC concentrations (100.0 pM–100.0 mM) and found to be linear (R2 = 0.6974). The sensitivity (1.27 × 10−3 μA μM−1 cm−2), LOQ (417.5 mM), and LOD (125 250 μM) were calculated from the calibration curve. The LDR (1.0 μM–1000 μM) was derived from the calibration plot and was also found to be linear (R2 = 0.9492). The preparation of ZnO·V2O5 NRs by a wet-chemical technique is a good advancement for the expansion of nanomaterial-based sensors to support enzyme-free sensing of biomolecules in healthcare fields. This fabricated GCE/ZnO·V2O5 NRs/Nf sensor was used for the recognition of D-glucose in real samples (apple juice, human serum, and urine) and returned satisfactory and rational outcomes.

28 citations

Journal ArticleDOI
08 Apr 2016-Sensors
TL;DR: The experimental results showed that a low cost, compact measurement system constructed by using an electrochemical ethylene sensor has a high sensitivity of 0.3907 V·ppm−1 with a theoretical detection limit of0.413 ppm, and is non-invasive and highly portable.
Abstract: Ethylene as an indicator for evaluating fruit ripening can be measured by very sensitive electrochemical gas sensors based on a high-resolution current produced by a bias potential applied to the electrodes. For this purpose, a measurement system for monitoring ethylene gas concentrations to evaluate fruit ripening by using the electrochemical ethylene sensor was successfully developed. Before the electrochemical ethylene sensor was used to measure the ethylene gas concentrations released from fruits, a calibration curve was established by the standard ethylene gases at concentrations of 2.99 ppm, 4.99 ppm, 8.01 ppm and 10 ppm, respectively, with a flow rate of 0.4 L·min−1. From the calibration curve, the linear relationship between the responses and concentrations of ethylene gas was obtained in the range of 0–10 ppm with the correlation coefficient R2 of 0.9976. The micropump and a novel signal conditioning circuit were implemented in this measurement, resulting in a rapid response in detecting ethylene concentrations down to 0.1 ppm in air and in under 50 s. In this experiment, three kinds of fruits—apples, pears and kiwifruits—were studied at a low concentration (under 0.8 ppm) of trace ethylene content in the air exhaled by fruits. The experimental results showed that a low cost, compact measurement system constructed by using an electrochemical ethylene sensor has a high sensitivity of 0.3907 V·ppm−1 with a theoretical detection limit of 0.413 ppm, and is non-invasive and highly portable.

28 citations


Network Information
Related Topics (5)
High-performance liquid chromatography
47.3K papers, 1M citations
90% related
Mass spectrometry
72.2K papers, 2M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
78% related
Reagent
60K papers, 1.2M citations
78% related
Particle size
69.8K papers, 1.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023210
2022508
2021137
2020213
2019234
2018216