scispace - formally typeset
Search or ask a question
Topic

Call blocking

About: Call blocking is a research topic. Over the lifetime, 1922 publications have been published within this topic receiving 27588 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A traffic model and analysis for cellular mobile radio telephone systems with handoff, which shows, for example, blocking probability, forced termination probability, and fraction of new calls not completed, as functions of pertinent system parameters.
Abstract: A traffic model and analysis for cellular mobile radio telephone systems with handoff are described. Three schemes for call traffic handling are considered. One is nonprioritized and two are priority oriented. Fixed channel assignment is considered. In the nonprioritized scheme the base stations make no distinction between new call attempts and handoff attempts. Attempts which find all channels occupied are cleared. In the first priority scheme considered, a fixed number of channels in each cell are reserved exclusively for handoff calls. The second priority scheme employs a similar channel assignment strategy, but, additionally, the queueing of handoff attempts is allowed. Appropriate analytical models and criteria are developed and used to derive performance characteristics. These show, for example, blocking probability, forced termination probability, and fraction of new calls not completed, as functions of pertinent system parameters. General formulas are given and specific numerical results for nominal system parameters are presented.

1,650 citations

Journal ArticleDOI

[...]

TL;DR: The results show that with a limited number of ARSs and some increase in the signaling overhead (as well as hardware complexity), the call blocking/dropping probability in a congested cell and the overall system can be reduced.
Abstract: Integrated cellular and ad hoc relaying systems (iCAR) is a new wireless system architecture based on the integration of cellular and modern ad hoc relaying technologies. It addresses the congestion problem due to unbalanced traffic in a cellular system and provides interoperability for heterogeneous networks. The iCAR system can efficiently balance traffic loads between cells by using ad hoc relaying stations (ARS) to relay traffic from one cell to another dynamically. This not only increases the system's capacity cost effectively, but also reduces the transmission power for mobile hosts and extends system coverage. We compare the performance of the iCAR system with conventional cellular systems in terms of the call blocking/dropping probability, throughput, and signaling overhead via analysis and simulation. Our results show that with a limited number of ARSs and some increase in the signaling overhead (as well as hardware complexity), the call blocking/dropping probability in a congested cell and the overall system can be reduced.

778 citations

Journal ArticleDOI

[...]

TL;DR: The author uses the congestion measures for a multilayer bandwidth-allocation algorithm, emulating some function of virtual circuit setup, fast circuit switching, and fast packet switching at these levels and sheds insight on traffic engineering issues such as appropriate link load, traffic integration, trunk group and switch sizing, and bandwidth reservation criteria for two bursty services.
Abstract: The major benefit of a broadband integrated ATM (asynchronous transfer mode) network is flexible and efficient allocation of communications bandwidth for communications services. However, methods are needed for evaluating congestion for integrated traffic. The author suggests evaluating congestion at different levels, namely the packet level, the burst level, and the call level. Congestion is measured by the probabilities of packet blocking, burst blocking, and call blocking. He outlines the methodologies for comparing these blocking probabilities. The author uses the congestion measures for a multilayer bandwidth-allocation algorithm, emulating some function of virtual circuit setup, fast circuit switching, and fast packet switching at these levels. The analysis also sheds insight on traffic engineering issues such as appropriate link load, traffic integration, trunk group and switch sizing, and bandwidth reservation criteria for two bursty services. >

653 citations

Journal ArticleDOI

[...]

TL;DR: It is shown that the well-known Guard Channel policy is optimal for the MINOBJ problem, while a new Fractional Guard Channelpolicy is optimalFor the MINBLOCK and MINC problems.
Abstract: Two important Quality-of-Service (QoS) measures for current cellular networks are the fractions of new and handoff “calls” that are blocked due to unavailability of “channels” (radio and/or computing resources). Based on these QoS measures, we derive optimal admission control policies for three problems: minimizing a linear objective function of the new and handoff call blocking probabilities (MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints on both of the blocking probabilities (MINC). We show that the well-known Guard Channel policy is optimal for the MINOBJ problem, while a new Fractional Guard Channel policy is optimal for the MINBLOCK and MINC problems. The Guard Channel policy reserves a set of channels for handoff calls while the Fractional Guard Channel policy effectively reserves a non-integral number of guard channels for handoff calls by rejecting new calls with some probability that depends on the current channel occupancy. It is also shown that the Fractional policy results in significant savings (20-50\%) in the new call blocking probability for the MINBLOCK problem and provides some, though small, gains over the Guard Channel policy for the MINC problem. Further, we also develop computationally inexpensive algorithms for the determination of the parameters for the optimal policies.

425 citations

Journal ArticleDOI

[...]

TL;DR: It is observed that due to the mobility, some assumptions may not be valid, which is the case when the average values of channel holding times for new calls and handoff calls are not equal.
Abstract: Call admission control (CAC) plays a significant role in providing the desired quality of service in wireless networks. Many CAC schemes have been proposed. Analytical results for some performance metrics such as call blocking probabilities are obtained under some specific assumptions. It is observed, however, that due to the mobility, some assumptions may not be valid, which is the case when the average values of channel holding times for new calls and handoff calls are not equal. We reexamine some of the analytical results for call blocking probabilities for some call admission control schemes under more general assumptions and provide some easier-to-compute approximate formulas.

407 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
91% related
Wireless ad hoc network
49K papers, 1.1M citations
89% related
Network packet
159.7K papers, 2.2M citations
89% related
Wireless
133.4K papers, 1.9M citations
88% related
Fading
55.4K papers, 1M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202112
202022
201929
201832
201742
201649