scispace - formally typeset
Search or ask a question

Showing papers on "Cancer cell published in 2007"


Journal ArticleDOI
04 Jan 2007-Nature
TL;DR: The identification of colon cancer stem cells that are distinct from the bulk tumour cells provides strong support for the hierarchical organization of human colon cancer, and their existence suggests that for therapeutic strategies to be effective, they must target the cancer stem Cells.
Abstract: Colon cancer is one of the best-understood neoplasms from a genetic perspective, yet it remains the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. What has yet to be established is whether every colon cancer cell possesses the potential to initiate and sustain tumour growth, or whether the tumour is hierarchically organized so that only a subset of cells--cancer stem cells--possess such potential. Here we use renal capsule transplantation in immunodeficient NOD/SCID mice to identify a human colon cancer-initiating cell (CC-IC). Purification experiments established that all CC-ICs were CD133+; the CD133- cells that comprised the majority of the tumour were unable to initiate tumour growth. We calculated by limiting dilution analysis that there was one CC-IC in 5.7 x 10(4) unfractionated tumour cells, whereas there was one CC-IC in 262 CD133+ cells, representing >200-fold enrichment. CC-ICs within the CD133+ population were able to maintain themselves as well as differentiate and re-establish tumour heterogeneity upon serial transplantation. The identification of colon cancer stem cells that are distinct from the bulk tumour cells provides strong support for the hierarchical organization of human colon cancer, and their existence suggests that for therapeutic strategies to be effective, they must target the cancer stem cells.

4,019 citations


Journal ArticleDOI
TL;DR: This work identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA) that showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog.
Abstract: Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44+CD24+ESA+ phenotype (0.2–0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44+CD24+ESA+ cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44+CD24+ESA+ pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44+CD24+ESA+ pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation. [Cancer Res 2007;67(3):1030–7]

3,109 citations


Journal ArticleDOI
04 Oct 2007-Nature
TL;DR: It is demonstrated that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft.
Abstract: Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.

2,997 citations


Journal ArticleDOI
TL;DR: Aberrant expression of miR-21 can contribute to HCC growth and spread by modulating PTEN expression and PTEN-dependent pathways involved in mediating phenotypic characteristics of cancer cells such as cell growth, migration, and invasion.

2,640 citations


Journal ArticleDOI
TL;DR: It is shown that anthracyclin-induced CRT translocation induces the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface and is identified as a key feature determining anticancer immune responses.
Abstract: Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.

2,550 citations


Journal ArticleDOI
TL;DR: Data demonstrate that cells within the CD44+ population of human HNSCC possess the unique properties of cancer stem cells in functional assays for cancer stem cell self-renewal and differentiation and form unique histological microdomains that may aid in cancer diagnosis.
Abstract: Like many epithelial tumors, head and neck squamous cell carcinoma (HNSCC) contains a heterogeneous population of cancer cells. We developed an immunodeficient mouse model to test the tumorigenic potential of different populations of cancer cells derived from primary, unmanipulated human HNSCC samples. We show that a minority population of CD44(+) cancer cells, which typically comprise <10% of the cells in a HNSCC tumor, but not the CD44(-) cancer cells, gave rise to new tumors in vivo. Immunohistochemistry revealed that the CD44(+) cancer cells have a primitive cellular morphology and costain with the basal cell marker Cytokeratin 5/14, whereas the CD44(-) cancer cells resemble differentiated squamous epithelium and express the differentiation marker Involucrin. The tumors that arose from purified CD44(+) cells reproduced the original tumor heterogeneity and could be serially passaged, thus demonstrating the two defining properties of stem cells: ability to self-renew and to differentiate. Furthermore, the tumorigenic CD44(+) cells differentially express the BMI1 gene, at both the RNA and protein levels. By immunohistochemical analysis, the CD44(+) cells in the tumor express high levels of nuclear BMI1, and are arrayed in characteristic tumor microdomains. BMI1 has been demonstrated to play a role in self-renewal in other stem cell types and to be involved in tumorigenesis. Taken together, these data demonstrate that cells within the CD44(+) population of human HNSCC possess the unique properties of cancer stem cells in functional assays for cancer stem cell self-renewal and differentiation and form unique histological microdomains that may aid in cancer diagnosis.

2,123 citations


Journal ArticleDOI
TL;DR: The results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.
Abstract: Recent observations indicate that, in several types of human cancer, only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the “cancer stem cell” (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues, either primary tissues collected from surgical specimens or xenografts established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, were disaggregated into single-cell suspensions and analyzed by flow cytometry. Surface markers that displayed intratumor heterogeneous expression among epithelial cancer cells were selected for cell sorting and tumorigenicity experiments. Individual phenotypic cancer cell subsets were purified, and their tumor-initiating properties were investigated by injection in NOD/SCID mice. Our observations indicate that, in six of six human CRC tested, the ability to engraft in vivo in immunodeficient mice was restricted to a minority subpopulation of epithelial cell adhesion molecule (EpCAM)high/CD44+ epithelial cells. Tumors originated from EpCAMhigh/CD44+ cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Analysis of the surface molecule repertoire of EpCAMhigh/CD44+ cells led to the identification of CD166 as an additional differentially expressed marker, useful for CSC isolation in three of three CRC tested. These results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.

2,115 citations


Journal ArticleDOI
TL;DR: An overview of the current understanding of the role of inflammation-induced cytokines in tumor initiation, promotion, and progression is provided.
Abstract: It has been established that cancer can be promoted and/or exacerbated by inflammation and infections. Indeed, chronic inflammation orchestrates a tumor-supporting microenvironment that is an indispensable participant in the neoplastic process. The mechanisms that link infection, innate immunity, inflammation, and cancer are being unraveled at a fast pace. Important components in this linkage are the cytokines produced by activated innate immune cells that stimulate tumor growth and progression. In addition, soluble mediators produced by cancer cells recruit and activate inflammatory cells, which further stimulate tumor progression. However, inflammatory cells also produce cytokines that can limit tumor growth. Here we provide an overview of the current understanding of the role of inflammation-induced cytokines in tumor initiation, promotion, and progression.

1,825 citations


Journal ArticleDOI
TL;DR: This work reports the stiffness of live metastatic cancer cells taken from the body fluids of patients with suspected lung, breast and pancreas cancer, and shows that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.
Abstract: Change in cell stiffness is a new characteristic of cancer cells that affects the way they spread1,2. Despite several studies on architectural changes in cultured cell lines1,3, no ex vivo mechanical analyses of cancer cells obtained from patients have been reported. Using atomic force microscopy, we report the stiffness of live metastatic cancer cells taken from the body (pleural) fluids of patients with suspected lung, breast and pancreas cancer. Within the same sample, we find that the cell stiffness of metastatic cancer cells is more than 70% softer, with a standard deviation over five times narrower, than the benign cells that line the body cavity. Different cancer types were found to display a common stiffness. Our work shows that mechanical analysis can distinguish cancerous cells from normal ones even when they show similar shapes. These results show that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.

1,744 citations


Journal ArticleDOI
13 Aug 2007-Oncogene
TL;DR: This review focuses on the mechanisms of action of histone deacetylase ( HDAC) inhibitors (HDACi), a group of recently discovered ‘targeted’ anticancer agents that induces different phenotypes in various transformed cells.
Abstract: This review focuses on the mechanisms of action of histone deacetylase (HDAC) inhibitors (HDACi), a group of recently discovered 'targeted' anticancer agents. There are 18 HDACs, which are generally divided into four classes, based on sequence homology to yeast counterparts. Classical HDACi such as the hydroxamic acid-based vorinostat (also known as SAHA and Zolinza) inhibits classes I, II and IV, but not the NAD+-dependent class III enzymes. In clinical trials, vorinostat has activity against hematologic and solid cancers at doses well tolerated by patients. In addition to histones, HDACs have many other protein substrates involved in regulation of gene expression, cell proliferation and cell death. Inhibition of HDACs causes accumulation of acetylated forms of these proteins, altering their function. Thus, HDACs are more properly called 'lysine deacetylases.' HDACi induces different phenotypes in various transformed cells, including growth arrest, activation of the extrinsic and/or intrinsic apoptotic pathways, autophagic cell death, reactive oxygen species (ROS)-induced cell death, mitotic cell death and senescence. In comparison, normal cells are relatively more resistant to HDACi-induced cell death. The plurality of mechanisms of HDACi-induced cell death reflects both the multiple substrates of HDACs and the heterogeneous patterns of molecular alterations present in different cancer cells.

1,424 citations


Journal ArticleDOI
TL;DR: It is shown that global repression of miRNA maturation promotes cellular transformation and tumorigenesis, and abrogation of global miRNA processing promotes tumorigenisation.
Abstract: MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate the expression of target mRNA transcripts. Many of these target mRNA transcripts are involved in proliferation, differentiation and apoptosis, processes commonly altered during tumorigenesis. Recent work has shown a global decrease of mature miRNA expression in human cancers. However, it is unclear whether this global repression of miRNAs reflects the undifferentiated state of tumors or causally contributes to the transformed phenotype. Here we show that global repression of miRNA maturation promotes cellular transformation and tumorigenesis. Cancer cells expressing short hairpin RNAs (shRNAs) targeting three different components of the miRNA processing machinery showed a substantial decrease in steady-state miRNA levels and a more pronounced transformed phenotype. In animals, miRNA processing-impaired cells formed tumors with accelerated kinetics. These tumors were more invasive than control tumors, suggesting that global miRNA loss enhances tumorigenesis. Furthermore, conditional deletion of Dicer1 enhanced tumor development in a K-Ras-induced mouse model of lung cancer. Overall, these studies indicate that abrogation of global miRNA processing promotes tumorigenesis.

Journal ArticleDOI
TL;DR: In this paper, gene expression and genetic profiles of cells purified from cancerous and normal breast tissue using markers previously associated with stem-cell-like properties were determined using markers from the TGF-β pathway, where its inhibition induced a more epithelial phenotype.

Journal ArticleDOI
TL;DR: The biological basis and the therapeutic implications of the stem cell model of cancer, first developed in human myeloid leukemias, is reviewed, which is today being extended to solid tumors, such as breast and brain cancer.
Abstract: Although monoclonal in origin, most tumors appear to contain a heterogeneous population of cancer cells. This observation is traditionally explained by postulating variations in tumor microenvironment and coexistence of multiple genetic subclones, created by progressive and divergent accumulation of independent somatic mutations. An additional explanation, however, envisages human tumors not as mere monoclonal expansions of transformed cells, but rather as complex tridimensional tissues where cancer cells become functionally heterogeneous as a result of differentiation. According to this second scenario, tumors act as caricatures of their corresponding normal tissues and are sustained in their growth by a pathological counterpart of normal adult stem cells, cancer stem cells. This model, first developed in human myeloid leukemias, is today being extended to solid tumors, such as breast and brain cancer. We review the biological basis and the therapeutic implications of the stem cell model of cancer.

Journal ArticleDOI
TL;DR: It is reasoned through experimental evidence that greater understanding of the mechanics of cancer cell deformability and its interactions with the extracellular physical, chemical and biological environments offers enormous potential for significant new developments in disease diagnostics, prophylactics, therapeutics and drug efficacy assays.

Journal ArticleDOI
TL;DR: Evidence that autophagy serves as a survival pathway in tumor cells treated with apoptosis activators and a rationale for the use of autophagic inhibitors such as chloroquine in combination with therapies designed to induce apoptosis in human cancers are provided.
Abstract: Autophagy is a lysosome-dependent degradative pathway frequently activated in tumor cells treated with chemotherapy or radiation. Whether autophagy observed in treated cancer cells represents a mechanism that allows tumor cells to survive therapy or a mechanism for initiating a nonapoptotic form of programmed cell death remains controversial. To address this issue, the role of autophagy in a Myc-induced model of lymphoma generated from cells derived from p53ERTAM/p53ERTAM mice (with ER denoting estrogen receptor) was examined. Such tumors are resistant to apoptosis due to a lack of nuclear p53. Systemic administration of tamoxifen led to p53 activation and tumor regression followed by tumor recurrence. Activation of p53 was associated with the rapid appearance of apoptotic cells and the induction of autophagy in surviving cells. Inhibition of autophagy with either chloroquine or ATG5 short hairpin RNA (shRNA) enhanced the ability of either p53 activation or alkylating drug therapy to induce tumor cell death. These studies provide evidence that autophagy serves as a survival pathway in tumor cells treated with apoptosis activators and a rationale for the use of autophagy inhibitors such as chloroquine in combination with therapies designed to induce apoptosis in human cancers.

Journal ArticleDOI
TL;DR: The results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.
Abstract: Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

Journal ArticleDOI
TL;DR: The gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium was compared to generate a 186-gene "invasiveness" gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer.
Abstract: BACKGROUND Breast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene "invasiveness" gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer.

Journal ArticleDOI
TL;DR: Findings indicate that SP is an enriched source of lung tumor-initiating cells with stem cell properties and may be an important target for effective therapy and a useful tool to investigate the tumorigenic process.
Abstract: Stem cells have been isolated by their ability to efflux Hoechst 33342 dye and are referred to as the "side population" (SP). In this study, we used flow cytometry and Hoechst 33342 dye efflux assay to isolate and characterize SP cells from six human lung cancer cell lines (H460, H23, HTB-58, A549, H441, and H2170). Nonobese diabetic/severe combined immunodeficiency xenograft experiments showed that SP cells were enriched in tumor-initiating capability compared with non-SP cells. Matrigel invasion assay showed that SP cells also have higher potential for invasiveness. Further characterization of this SP phenotype revealed several stem cell properties. We found evidence for repopulating ability by SP to regenerate a population resembling the original population. SP displayed elevated expression of ABCG2 as well as other ATP-binding cassette transporters and showed resistance to multiple chemotherapeutic drugs. Human telomerase reverse transcriptase expression was higher in the SP, suggesting that this fraction may represent a reservoir with unlimited proliferative potential for generating cancer cells. mRNA levels of minichromosome maintenance (MCM) 7, a member of the MCM family of proteins critical to the DNA replication complex, were lower in SP cells, suggesting that a majority of the SP fraction was in the G(0) quiescent state. Sixteen clinical lung cancer samples also displayed a smaller but persistent SP population. These findings indicate that SP is an enriched source of lung tumor-initiating cells with stem cell properties and may be an important target for effective therapy and a useful tool to investigate the tumorigenic process.

Journal ArticleDOI
TL;DR: Interestingly, this work functionally link the epigenetic loss of miRNA-124a with the activation of cyclin D kinase 6, a bona fide oncogenic factor, and the phosphorylation of the retinoblastoma, a tumor suppressor gene.
Abstract: The mechanisms underlying microRNA (miRNA) disruption in human disease are poorly understood. In cancer cells, the transcriptional silencing of tumor suppressor genes by CpG island promoter hypermethylation has emerged as a common hallmark. We wondered if the same epigenetic disruption can "hit" miRNAs in transformed cells. To address this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in combination with a miRNA expression profiling. We have observed that DNA hypomethylation induces a release of miRNA silencing in cancer cells. One of the main targets is miRNA-124a, which undergoes transcriptional inactivation by CpG island hypermethylation in human tumors from different cell types. Interestingly, we functionally link the epigenetic loss of miRNA-124a with the activation of cyclin D kinase 6, a bona fide oncogenic factor, and the phosphorylation of the retinoblastoma, a tumor suppressor gene.

Journal ArticleDOI
TL;DR: Results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of meetformin in the inhibition of cancer cell growth.
Abstract: Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2−/−) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth. [Cancer Res 2007;67(22):10804–12]

Journal ArticleDOI
TL;DR: The results demonstrate the unique feature of DZNep as a novel chromatin remodeling compound and suggest that pharmacologic reversal of PRC2-mediated gene repression by DzNep may constitute a novel approach for cancer therapy.
Abstract: Polycomb-repressive complex 2 (PRC2)-mediated histone methylation plays an important role in aberrant cancer gene silencing and is a potential target for cancer therapy. Here we show that S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep) induces efficient apoptotic cell death in cancer cells but not in normal cells. We found that DZNep effectively depleted cellular levels of PRC2 components EZH2, SUZ12, and EED and inhibited associated histone H3 Lys 27 methylation (but not H3 Lys 9 methylation). By integrating RNA interference (RNAi), genome-wide expression analysis, and chromatin immunoprecipitation (ChIP) studies, we have identified a prominent set of genes selectively repressed by PRC2 in breast cancer that can be reactivated by DZNep. We further demonstrate that the preferential reactivation of a set of these genes by DZNep, including a novel apoptosis affector, FBXO32, contributes to DZNep-induced apoptosis in breast cancer cells. Our results demonstrate the unique feature of DZNep as a novel chromatin remodeling compound and suggest that pharmacologic reversal of PRC2-mediated gene repression by DZNep may constitute a novel approach for cancer therapy.

Journal ArticleDOI
TL;DR: Recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics is covered.
Abstract: New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.

Journal ArticleDOI
13 Sep 2007-Oncogene
TL;DR: Mir-29 is an endogenous regulator of Mcl-1 protein expression, and thereby, apoptosis, andTransfection of non-malignant cells with a locked-nucleic acid antagonist of mir-29b increased M cl-1 levels and reduced TRAIL-mediated apoptosis.
Abstract: Cellular expression of Mcl-1, an anti-apoptotic Bcl-2 family member, is tightly regulated Recently, Bcl-2 expression was shown to be regulated by microRNAs, small endogenous RNA molecules that regulate protein expression through sequence-specific interaction with messenger RNA By analogy, we reasoned that Mcl-1 expression may also be regulated by microRNAs We chose human immortalized, but non-malignant, H69 cholangiocyte and malignant KMCH cholangiocarcinoma cell lines for these studies, because Mcl-1 is dysregulated in cells with the malignant phenotype By in silico analysis, we identified a putative target site in the Mcl-1 mRNA for the mir-29 family, and found that mir-29b was highly expressed in cholangiocytes Interestingly, mir-29b was downregulated in malignant cells, consistent with Mcl-1 protein upregulation Enforced mir-29b expression reduced Mcl-1 protein expression in KMCH cells This effect was direct, as mir-29b negatively regulated the expression of an Mcl-1 3′ untranslated region (UTR)-based reporter construct Enforced mir-29b expression reduced Mcl-1 cellular protein levels and sensitized the cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity Transfection of non-malignant cells (that express high levels of mir-29) with a locked-nucleic acid antagonist of mir-29b increased Mcl-1 levels and reduced TRAIL-mediated apoptosis Thus mir-29 is an endogenous regulator of Mcl-1 protein expression, and thereby, apoptosis

Journal ArticleDOI
TL;DR: This review focalizes some of these intricate events by discussing the relationships occurring among oxidative/nitrosative/metabolic stress, inflammation and cancer.
Abstract: A wide array of chronic inflammatory conditions predispose susceptible cells to neoplastic transformation. In general, the longer the inflammation persists, the higher the risk of cancer. A mutated cell is a sine qua non for carcinogenesis. Inflammatory processes may induce DNA mutations in cells via oxidative/nitrosative stress. This condition occurs when the generation of free radicals and active intermediates in a system exceeds the system's ability to neutralize and eliminate them. Inflammatory cells and cancer cells themselves produce free radicals and soluble mediators such as metabolites of arachidonic acid, cytokines and chemokines, which act by further producing reactive species. These, in turn, strongly recruit inflammatory cells in a vicious circle. Reactive intermediates of oxygen and nitrogen may directly oxidize DNA, or may interfere with mechanisms of DNA repair. These reactive substances may also rapidly react with proteins, carbohydrates and lipids, and the derivative products may induce a high perturbation in the intracellular and intercellular homeostasis, until DNA mutation. The main substances that link inflammation to cancer via oxidative/nitrosative stress are prostaglandins and cytokines. The effectors are represented by an imbalance between pro-oxidant and antioxidant enzyme activities (lipoxygenase, cyclooxygenase and phospholipid hydroperoxide glutathione-peroxidase), hydroperoxides and lipoperoxides, aldehydes and peroxinitrite. This review focalizes some of these intricate events by discussing the relationships occurring among oxidative/nitrosative/metabolic stress, inflammation and cancer.

Journal ArticleDOI
TL;DR: It is shown that hypoxia-inducible factor 1 negatively regulates mitochondrial biogenesis and O(2) consumption in renal carcinoma cells lacking the von Hippel-Lindau tumor suppressor (VHL), and that transcription of the gene encoding the coactivator PGC-1beta is C-MYC dependent.

Journal ArticleDOI
TL;DR: This new biomimetic model may provide a broadly applicable 3D culture system to study the effect of microenvironmental conditions on tumor malignancy in vitro and in vivo.
Abstract: Microenvironmental conditions control tumorigenesis and biomimetic culture systems that allow for in vitro and in vivo tumor modeling may greatly aid studies of cancer cells' dependency on these conditions. We engineered three-dimensional (3D) human tumor models using carcinoma cells in polymeric scaffolds that recreated microenvironmental characteristics representative of tumors in vivo. Strikingly, the angiogenic characteristics of tumor cells were dramatically altered upon 3D culture within this system, and corresponded much more closely to tumors formed in vivo. Cells in this model were also less sensitive to chemotherapy and yielded tumors with enhanced malignant potential. We assessed the broad relevance of these findings with 3D culture of other tumor cell lines in this same model, comparison with standard 3D Matrigel culture and in vivo experiments. This new biomimetic model may provide a broadly applicable 3D culture system to study the effect of microenvironmental conditions on tumor malignancy in vitro and in vivo.

Journal ArticleDOI
TL;DR: The recent discovery ofGRP78 on the cell surface of cancer cells but not in normal tissues suggests that targeted therapy against cancer via surface GRP78 may be feasible.
Abstract: Cancer cells adapt to chronic stress in the tumor microenvironment by inducing the expression of GRP78/BiP, a major endoplasmic reticulum chaperone with Ca(2+)-binding and antiapoptotic properties. GRP78 promotes tumor proliferation, survival, metastasis, and resistance to a wide variety of therapies. Thus, GRP78 expression may serve as a biomarker for tumor behavior and treatment response. Combination therapy suppressing GRP78 expression may represent a novel approach toward eradication of residual tumors. Furthermore, the recent discovery of GRP78 on the cell surface of cancer cells but not in normal tissues suggests that targeted therapy against cancer via surface GRP78 may be feasible.

Journal ArticleDOI
TL;DR: Two compounds are discovered that efficiently inhibited in vitro tumor cell proliferation in a GLI-dependent manner and successfully blocked cell growth in an in vivo xenograft model using human prostate cancer cells harboring downstream activation of the Hh pathway.
Abstract: The developmentally important Hedgehog (Hh) signaling pathway has recently been implicated in several forms of solid cancer. Current drug development programs focus on targeting the protooncogene Smoothened, a key transmembrane pathway member. These drug candidates, albeit promising, do not address the scenario in which pathway activation occurs downstream of Smoothened, as observed in cases of medulloblastoma, glioma, pericytoma, breast cancer, and prostate cancer. A cellular screen for small-molecule antagonists of GLI-mediated transcription, which constitutes the final step in the Hh pathway, revealed two molecules that are able to selectively inhibit GLI-mediated gene transactivation. We provide genetic evidence of downstream pathway blockade by these compounds and demonstrate the ineffectiveness of upstream antagonists such as cyclopamine in such situations. Mechanistically, both inhibitors act in the nucleus to block GLI function, and one of them interferes with GLI1 DNA binding in living cells. Importantly, the discovered compounds efficiently inhibited in vitro tumor cell proliferation in a GLI-dependent manner and successfully blocked cell growth in an in vivo xenograft model using human prostate cancer cells harboring downstream activation of the Hh pathway.

Journal ArticleDOI
TL;DR: O(2) deprivation (hypoxia) and cellular proliferation engage opposite cellular pathways, yet often coexist during tumor growth, so acting in concert these transcription factors reprogram metabolism, protein synthesis, and cell cycle progression, to "fine tune" adaptive responses to hypoxic environments.

Journal ArticleDOI
12 Apr 2007-Nature
TL;DR: Findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.
Abstract: Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.