scispace - formally typeset
Search or ask a question

Showing papers on "Cancer cell published in 2012"


Journal ArticleDOI
25 May 2012-Cell
TL;DR: This paper identified the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes.

7,192 citations


Journal ArticleDOI
TL;DR: Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types, which presents interesting new targets for anticancer therapy.

3,486 citations


Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: It was found that mutated cancer genes were associated with cellular response to most currently available cancer drugs, and systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Abstract: Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

2,187 citations


Journal ArticleDOI
TL;DR: Induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitUMor immune responses.
Abstract: In the movie The Great Escape , “problem” prisoners with multiple escape attempts are put in an “escape-proof” POW camp, where they use their cleverness and specialized skills to outwit their captors. However, when it comes to escaping, even Steve McQueen doesn’t have anything on cancer cells. Although human cancers express tumor antigens recognized by the immune system, host immune responses often fail to control tumor growth. Taube et al. now explain one way in which tumor cells may adapt to escape from immune surveillance. The researchers found a strong association between expression of the immune-inhibitory molecule B7-H1 (PD-L1) on melanocytes and immune cell infiltration into tumors in patients with different stages of melanoma. The B7-H1+ melanocytes were found directly adjacent to the immune cells, with interferon-γ detected at the melanocyte–immune cell interface. Interferon-γ, which is secreted by the immune cells, induces B7-H1 expression; thus, the tumor may adapt by causing immune cells to trigger their own inhibition. Indeed, patients with B7-H1+ metastatic melanoma had prolonged overall survival when compared with B7-H1− metastatic melanoma patients, perhaps suggesting that B7-H1 expression by the tumors is stimulated by a more successful immune response. It remains to be seen whether blocking B7-H1 in these patients will further improve survival. But it is clear that for both prisoners and tumors, adaptation is the key to escape.

1,924 citations


Journal ArticleDOI
TL;DR: Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment and activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.
Abstract: Contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism but rather alter the mitochondrial bioenergetic and biosynthetic state. These states communicate with the nucleus through mitochondrial 'retrograde signalling' to modulate signal transduction pathways, transcriptional circuits and chromatin structure to meet the perceived mitochondrial and nuclear requirements of the cancer cell. Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment. These alterations activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.

1,709 citations


Journal ArticleDOI
25 May 2012-Science
TL;DR: Glycine consumption and expression of the mitochondrial glycine biosynthetic pathway was identified as strongly correlated with rates of proliferation across cancer cells, and higher expression of this pathway was associated with greater mortality in breast cancer patients.
Abstract: Metabolic reprogramming has been proposed to be a hallmark of cancer, yet a systematic characterization of the metabolic pathways active in transformed cells is currently lacking. Using mass spectrometry, we measured the consumption and release (CORE) profiles of 219 metabolites from media across the NCI-60 cancer cell lines, and integrated these data with a preexisting atlas of gene expression. This analysis identified glycine consumption and expression of the mitochondrial glycine biosynthetic pathway as strongly correlated with rates of proliferation across cancer cells. Antagonizing glycine uptake and its mitochondrial biosynthesis preferentially impaired rapidly proliferating cells. Moreover, higher expression of this pathway was associated with greater mortality in breast cancer patients. Increased reliance on glycine may represent a metabolic vulnerability for selectively targeting rapid cancer cell proliferation.

1,208 citations


Journal ArticleDOI
TL;DR: All human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination, showing that CD47 is a commonly expressed molecule on all cancers, its function to blockphagocytosis is known, and blockade of its function leads to tumor cell phagcytosis and elimination.
Abstract: CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination CD47 is therefore a validated target for cancer therapies

1,206 citations


Journal ArticleDOI
TL;DR: Intentions strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings.

1,161 citations


Journal ArticleDOI
03 May 2012-Nature
TL;DR: A clinically relevant ATP site inhibitor of mTOR, INK128, is developed, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure.
Abstract: The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.

1,151 citations


Journal ArticleDOI
05 Jan 2012-Nature
TL;DR: It is suggested that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.
Abstract: Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.

1,136 citations


Journal ArticleDOI
19 Jan 2012-Nature
TL;DR: These findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.
Abstract: Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.

Journal ArticleDOI
TL;DR: It remains uncertain whether the stem cell model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells.

Journal ArticleDOI
06 Jul 2012-Cell
TL;DR: A network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer is uncovered, and a mechanism linking chemoresistance and metastasis, with opportunities for intervention is provided.

Journal ArticleDOI
02 Mar 2012-Cell
TL;DR: It is shown that coexpression of Slug and Sox9 promotes the tumorigenic and metastasis-seeding abilities of human breast cancer cells and is associated with poor patient survival, providing direct evidence that human breast cancers stem cells are controlled by key regulators similar to those operating in normal murine MaSCs.

Journal ArticleDOI
TL;DR: First, to prevent or reverse therapy resistance; and second, using a synthetic lethal approach to specifically kill cancer cells that are dependent on a compensatory DNA repair pathway for survival in the context of cancer-associated oxidative and replicative stress are tested.
Abstract: Dysregulation of DNA damage repair and signalling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. Dysfunction of one DNA repair pathway may be compensated for by the function of another compensatory DDR pathway, which may be increased and contribute to resistance to DNA-damaging chemotherapy and radiotherapy. Therefore, DDR pathways make an ideal target for therapeutic intervention; first, to prevent or reverse therapy resistance; and second, using a synthetic lethal approach to specifically kill cancer cells that are dependent on a compensatory DNA repair pathway for survival in the context of cancer-associated oxidative and replicative stress. These hypotheses are currently being tested in the laboratory and are being translated into clinical studies.

Journal ArticleDOI
TL;DR: It is shown using an indentation-type atomic force microscope (IT-AFM) that unadulterated human breast biopsies display distinct stiffness profiles, and evidence obtained from the lungs of mice with late-stage tumours shows that migration and metastatic spreading is correlated to the low stiffness of hypoxia-associated cancer cells.
Abstract: Cancer initiation and progression follow complex molecular and structural changes in the extracellular matrix and cellular architecture of living tissue. However, it remains poorly understood how the transformation from health to malignancy alters the mechanical properties of cells within the tumour microenvironment. Here, we show using an indentation-type atomic force microscope (IT-AFM) that unadulterated human breast biopsies display distinct stiffness profiles. Correlative stiffness maps obtained on normal and benign tissues show uniform stiffness profiles that are characterized by a single distinct peak. In contrast, malignant tissues have a broad distribution resulting from tissue heterogeneity, with a prominent low-stiffness peak representative of cancer cells. Similar findings are seen in specific stages of breast cancer in MMTV-PyMT transgenic mice. Further evidence obtained from the lungs of mice with late-stage tumours shows that migration and metastatic spreading is correlated to the low stiffness of hypoxia-associated cancer cells. Overall, nanomechanical profiling by IT-AFM provides quantitative indicators in the clinical diagnostics of breast cancer with translational significance.

Journal ArticleDOI
TL;DR: It is shown that the homeobox factor Prrx1 is an EMT inducer conferring migratory and invasive properties, and is a biomarker associated with patient survival and lack of metastasis.

Journal ArticleDOI
TL;DR: Evidence is provided that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1 α, and this has significant implications for understanding the hypoxic tumour phenotype.
Abstract: Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.

Journal ArticleDOI
TL;DR: In this paper, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell.
Abstract: Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism. Significance: Altered tumor metabolism is now a generally regarded hallmark of cancer. Nevertheless, the recognition of metabolic heterogeneity in cancer is becoming clearer as a result of advancements in several tools used to interrogate metabolic rewiring and dependencies. Deciphering this context-dependent heterogeneity will supplement our current understanding of tumor metabolism and may yield promising therapeutic and diagnostic utilities. Cancer Discov; 2(10); 881–98. ©2012 AACR .

Journal ArticleDOI
TL;DR: Evidence is provided that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.
Abstract: Entry of tumor cells into the blood stream is a critical step in cancer metastasis. Although significant progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism of cancer cell intravasation remains largely unknown. We developed a microfluidic-based assay to recreate the tumor-vascular interface in three-dimensions, allowing for high resolution, real-time imaging, and precise quantification of endothelial barrier function. Studies are aimed at testing the hypothesis that carcinoma cell intravasation is regulated by biochemical factors from the interacting cells and cellular interactions with macrophages. We developed a method to measure spatially resolved endothelial permeability and show that signaling with macrophages via secretion of tumor necrosis factor alpha results in endothelial barrier impairment. Under these conditions intravasation rates were increased as validated with live imaging. To further investigate tumor-endothelial (TC-EC) signaling, we used highly invasive fibrosarcoma cells and quantified tumor cell migration dynamics and TC-EC interactions under control and perturbed (with tumor necrosis factor alpha) barrier conditions. We found that endothelial barrier impairment was associated with a higher number and faster dynamics of TC-EC interactions, in agreement with our carcinoma intravasation results. Taken together our results provide evidence that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.

Journal ArticleDOI
TL;DR: By combining immunostaining and real-time imaging in viable slices of human lung tumors, it is revealed that the density and the orientation of the stromal extracellular matrix likely play key roles in controlling the migration of T cells.
Abstract: Appropriate localization and migration of T cells is a prerequisite for antitumor immune surveillance. Studies using fixed tumor samples from human patients have shown that T cells accumulate more efficiently in the stroma than in tumor islets, but the mechanisms by which this occurs are unknown. By combining immunostaining and real-time imaging in viable slices of human lung tumors, we revealed that the density and the orientation of the stromal extracellular matrix likely play key roles in controlling the migration of T cells. Active T cell motility, dependent on chemokines but not on β1 or β2 integrins, was observed in loose fibronectin and collagen regions, whereas T cells migrated poorly in dense matrix areas. Aligned fibers in perivascular regions and around tumor epithelial cell regions dictated the migratory trajectory of T cells and restricted them from entering tumor islets. Consistently, matrix reduction with collagenase increased the ability of T cells to contact cancer cells. Thus, the stromal extracellular matrix influences antitumor immunity by controlling the positioning and migration of T cells. Understanding the mechanisms by which this collagen network is generated has the potential to aid in the development of new therapeutics.

Journal ArticleDOI
TL;DR: This review focuses on the molecular mechanisms of miR-34-mediated tumor suppression, pharmacologies in animal models of cancer, and a status update of a mi R-34 therapy that may be among the first miRNA mimics to reach the clinic.
Abstract: MicroRNA-34 (miR-34) is a master regulator of tumor suppression. It is downregulated in numerous cancers and inhibits malignant growth by repressing genes involved in various oncogenic signaling pathways. Consequently, miR-34 antagonizes processes that are necessary for basic cancer cell viability as well as cancer stemness, metastasis, and chemoresistance. This broad anti-oncogenic activity holds the prospect of creating a new remedy that is effective against tumor heterogeneity. This review focuses on the molecular mechanisms of miR-34-mediated tumor suppression, pharmacologies in animal models of cancer, and a status update of a miR-34 therapy that may be among the first miRNA mimics to reach the clinic.

Journal ArticleDOI
TL;DR: Through cytoskeleton reorganization, cell detachment activates the Hippo pathway kinases Lats1/2 and leads to YAP phosphorylation and inhibition, providing a novel connection between cell attachment and anoikis through the HippO pathway and have important implications in cancer therapeutics.
Abstract: Cell attachment to the extracellular matrix (ECM) is crucial to cell physiology such as polarity, motility, and proliferation. In normal cells, loss of attachment to the ECM induces a specific type of apoptosis, termed anoikis. Resistance to anoikis in cancer cells promotes their survival in circulation and dispersion to distant anatomic sites, leading to tumor metastasis. The Yes-associated protein (YAP) transcription coactivator is a human oncogene and a key regulator of organ size. The Hippo tumor suppressor pathway phosphorylates and inhibits YAP. However, little is known about the signals that regulate the Hippo pathway. Here we report that through cytoskeleton reorganization, cell detachment activates the Hippo pathway kinases Lats1/2 and leads to YAP phosphorylation and inhibition. The detachment-induced YAP inactivation is required for anoikis in nontransformed cells, whereas in cancer cells with deregulation of the Hippo pathway, knockdown of YAP and TAZ restores anoikis. Furthermore, we provided evidence that Lats1/2 expression level is indeed significantly down-regulated in metastatic prostate cancer. Our findings provide a novel connection between cell attachment and anoikis through the Hippo pathway and have important implications in cancer therapeutics.

Journal ArticleDOI
04 Oct 2012-PLOS ONE
TL;DR: In this paper, a detailed examination of highly invasive ovarian cancer cells relative to their less invasive parental cells (HEY) demonstrates that deformability is also an accurate biomarker of metastatic potential.
Abstract: The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show, consistent with previous studies conducted in other types of epithelial cancer, that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed examination of highly invasive ovarian cancer cells (HEY A8) relative to their less invasive parental cells (HEY), demonstrates that deformability is also an accurate biomarker of metastatic potential. Comparative gene expression analyses indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling and microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

Journal ArticleDOI
TL;DR: The present article discusses the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells and provides a summary of the vast types of anti-cancer drugs that have been delivered intocancer cells employing a variety of receptor binding molecules.

Journal ArticleDOI
TL;DR: Recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression are focused on, with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy.
Abstract: The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress. Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy.

Journal ArticleDOI
03 Aug 2012-Cell
TL;DR: In this paper, the authors identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock, which supports oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation.

Journal ArticleDOI
TL;DR: It is shown that the G-quadruplex interacting drug pyridostatin promoted growth arrest in human cancer cells via inducing replication- and transcription-dependent DNA damage.
Abstract: Guanine-rich DNA sequences that can adopt non-Watson-Crick structures in vitro are prevalent in the human genome. Whether such structures normally exist in mammalian cells has, however, been the subject of active research for decades. Here we show that the G-quadruplex-interacting drug pyridostatin promotes growth arrest in human cancer cells by inducing replication- and transcription-dependent DNA damage. A chromatin immunoprecipitation sequencing analysis of the DNA damage marker γH2AX provided the genome-wide distribution of pyridostatin-induced sites of damage and revealed that pyridostatin targets gene bodies containing clusters of sequences with a propensity for G-quadruplex formation. As a result, pyridostatin modulated the expression of these genes, including the proto-oncogene SRC. We observed that pyridostatin reduced SRC protein abundance and SRC-dependent cellular motility in human breast cancer cells, validating SRC as a target of this drug. Our unbiased approach to define genomic sites of action for a drug establishes a framework for discovering functional DNA-drug interactions.


Journal ArticleDOI
TL;DR: It is suggested that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.
Abstract: Short-term starvation (or fasting) protects normal cells, mice, and potentially humans from the harmful side effects of a variety of chemotherapy drugs. Here, we show that treatment with starvation conditions sensitized yeast cells (Saccharomyces cerevisiae) expressing the oncogene-like RAS2val19 to oxidative stress and 15 of 17 mammalian cancer cell lines to chemotherapeutic agents. Cycles of starvation were as effective as chemotherapeutic agents in delaying progression of different tumors and increased the effectiveness of these drugs against melanoma, glioma, and breast cancer cells. In mouse models of neuroblastoma, fasting cycles plus chemotherapy drugs—but not either treatment alone—resulted in long-term cancer-free survival. In 4T1 breast cancer cells, short-term starvation resulted in increased phosphorylation of the stress-sensitizing Akt and S6 kinases, increased oxidative stress, caspase-3 cleavage, DNA damage, and apoptosis. These studies suggest that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.