scispace - formally typeset
Search or ask a question

Showing papers on "Cancer cell published in 2017"


Journal ArticleDOI
TL;DR: Current knowledge on the mechanisms that underlie the activation of immune responses against dying cells and their pathophysiological relevance are reviewed.
Abstract: Immunogenicity depends on two key factors: antigenicity and adjuvanticity. The presence of exogenous or mutated antigens explains why infected cells and malignant cells can initiate an adaptive immune response provided that the cells also emit adjuvant signals as a consequence of cellular stress and death. Several infectious pathogens have devised strategies to control cell death and limit the emission of danger signals from dying cells, thereby avoiding immune recognition. Similarly, cancer cells often escape immunosurveillance owing to defects in the molecular machinery that underlies the release of endogenous adjuvants. Here, we review current knowledge on the mechanisms that underlie the activation of immune responses against dying cells and their pathophysiological relevance.

1,775 citations


Journal ArticleDOI
01 May 2017-Nature
TL;DR: It is shown that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that casp enzyme activation can trigger necrosis by cleaving G SDME and offer new insights into cancer chemotherapy.
Abstract: Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.

1,458 citations


Journal ArticleDOI
TL;DR: The extrinsic regulation of angiogenesis by the tumour microenvironment is discussed, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Abstract: Tumours display considerable variation in the patterning and properties of angiogenic blood vessels, as well as in their responses to anti-angiogenic therapy. Angiogenic programming of neoplastic tissue is a multidimensional process regulated by cancer cells in concert with a variety of tumour-associated stromal cells and their bioactive products, which encompass cytokines and growth factors, the extracellular matrix and secreted microvesicles. In this Review, we discuss the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.

1,145 citations


Journal ArticleDOI
TL;DR: It is shown that the DNA exonuclease Trex1 is induced by radiation doses above 12–18 Gy in different cancer cells, and attenuates their immunogenicity by degrading DNA that accumulates in the cytosol upon radiation.
Abstract: Trex1 is an exonuclease that degrades cytosolic DNA and has been associated with modulation of interferon responses in autoimmunity and viral infections. Here, the authors show that Trex1 attenuates the immunogenicity of cancer cells treated with high radiation doses by d…

1,084 citations


Journal ArticleDOI
05 Jul 2017-Nature
TL;DR: Vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts is identified.
Abstract: Cancer cells can assume different biological states, which can affect their resistance to therapies. A mesenchymal phenotype has been associated with drug resistance but the mechanism behind this state is not well understood. Stuart Schreiber and colleagues now show that tumour cells with a mesenchymal phenotype are selectively sensitive to inhibition of GPX4, an enzyme that alters lipid metabolism. GPX4 dissipates lipid peroxides and therefore prevents the iron-mediated reactions which induce ferroptotic cell death. These findings offer new perspectives on targeting cancers that have undergone a transition to a mesenchymal state to evade other therapeutic agents.

1,008 citations


Journal ArticleDOI
TL;DR: How cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression is discussed; in particular, potential metabolic vulnerabilities that might be targeted therapeutically are highlighted.
Abstract: Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.

982 citations


Journal ArticleDOI
TL;DR: The mechanisms of cancer drug resistance are outlined and in following, the treatment failures by common chemotherapy agents in the different type of cancers are outlined.
Abstract: Anticancer drugs resistance is a complex process that arises from altering in the drug targets. Advances in the DNA microarray, proteomics technology and the development of targeted therapies provide the new strategies to overcome the drug resistance. Although a design of the new chemotherapy agents is growing quickly, effective chemotherapy agent has not been discovered against the advanced stage of cancer (such as invasion and metastasis). The cancer cell resistance against the anticancer agents can be due to many factors such as the individual's genetic differences, especially in tumoral somatic cells. Also, the cancer drug resistance is acquired, the drug resistance can be occurred by different mechanisms, including multi-drug resistance, cell death inhibiting (apoptosis suppression), altering in the drug metabolism, epigenetic and drug targets, enhancing DNA repair and gene amplification. In this review, we outlined the mechanisms of cancer drug resistance and in following, the treatment failures by common chemotherapy agents in the different type of cancers.

949 citations


Journal ArticleDOI
TL;DR: The authors show that a suitable combination of an enzyme and iron nanoparticles loaded on dendritic silica induces apoptosis of cancer cells in response to the glucose-reliant and mild acidic microenvironment.
Abstract: Tumor cells metabolize in distinct pathways compared with most normal tissue cells. The resulting tumor microenvironment would provide characteristic physiochemical conditions for selective tumor modalities. Here we introduce a concept of sequential catalytic nanomedicine for efficient tumor therapy by designing and delivering biocompatible nanocatalysts into tumor sites. Natural glucose oxidase (GOD, enzyme catalyst) and ultrasmall Fe3O4 nanoparticles (inorganic nanozyme, Fenton reaction catalyst) have been integrated into the large pore-sized and biodegradable dendritic silica nanoparticles to fabricate the sequential nanocatalyst. GOD in sequential nanocatalyst could effectively deplete glucose in tumor cells, and meanwhile produce a considerable amount of H2O2 for subsequent Fenton-like reaction catalyzed by Fe3O4 nanoparticles in response to mild acidic tumor microenvironment. Highly toxic hydroxyl radicals are generated through these sequential catalytic reactions to trigger the apoptosis and death of tumor cells. The current work manifests a proof of concept of catalytic nanomedicine by approaching selectivity and efficiency concurrently for tumor therapeutics.

943 citations


Journal ArticleDOI
TL;DR: The roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-stranded break repair and the stabilization of replication forks, and in modulating chromatin structure are discussed.
Abstract: Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.

928 citations


Journal ArticleDOI
TL;DR: The data indicate that lack of CD103+ DCs within the tumor microenvironment dominantly resists the effector phase of an anti-tumor T cell response, contributing to immune escape.

896 citations


Journal ArticleDOI
09 Nov 2017-Nature
TL;DR: It is demonstrated that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments, and it is suggested that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance.
Abstract: Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival. Here we show that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments. Consequently, we demonstrate that persister cells acquire a dependency on GPX4. Loss of GPX4 function results in selective persister cell ferroptotic death in vitro and prevents tumour relapse in mice. These findings suggest that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance.

Journal ArticleDOI
04 Oct 2017-Nature
TL;DR: It is shown that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS–STING (cyclic GMP–AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer.
Abstract: Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.

Journal ArticleDOI
TL;DR: The rationale for targeting TGF-β signaling in cancer is reviewed, the clinical status of pharmacological inhibitors are summarized, and the direct effects of TGF -β signaling blockade on tumor and stromal cells are discussed.
Abstract: The transforming growth factor (TGF)-β signaling pathway is deregulated in many diseases, including cancer. In healthy cells and early-stage cancer cells, this pathway has tumor-suppressor functions, including cell-cycle arrest and apoptosis. However, its activation in late-stage cancer can promote tumorigenesis, including metastasis and chemoresistance. The dual function and pleiotropic nature of TGF-β signaling make it a challenging target and imply the need for careful therapeutic dosing of TGF-β drugs and patient selection. We review here the rationale for targeting TGF-β signaling in cancer and summarize the clinical status of pharmacological inhibitors. We discuss the direct effects of TGF-β signaling blockade on tumor and stromal cells, as well as biomarkers that can predict the efficacy of TGF-β inhibitors in cancer patients.

Journal ArticleDOI
TL;DR: This review focuses on the current understanding of the tumor promoting and the tumor suppressive functions of ROS, and highlights the potential mechanism(s) involved, and sheds light on a very novel and an actively growing field of ROS‐dependent cell death mechanism referred to as ferroptosis.

Journal ArticleDOI
TL;DR: A cross-talk between PARPi and tumor-associated immunosuppression is demonstrated and evidence is provided to support the combination of PAR Pi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer.
Abstract: Purpose: To explore whether a cross-talk exists between PARP inhibition and PD-L1/PD-1 immune checkpoint axis, and determine whether blockade of PD-L1/PD-1 potentiates PARP inhibitor (PARPi) in tumor suppression.Experimental Design: Breast cancer cell lines, xenograft tumors, and syngeneic tumors treated with PARPi were assessed for PD-L1 expression by immunoblotting, IHC, and FACS analyses. The phospho-kinase antibody array screen was used to explore the underlying mechanism of PARPi-induced PD-L1 upregulation. The therapeutic efficacy of PARPi alone, PD-L1 blockade alone, or their combination was tested in a syngeneic tumor model. The tumor-infiltrating lymphocytes and tumor cells isolated from syngeneic tumors were analyzed by CyTOF and FACS to evaluate the activity of antitumor immunity in the tumor microenvironment.Results: PARPi upregulated PD-L1 expression in breast cancer cell lines and animal models. Mechanistically, PARPi inactivated GSK3β, which in turn enhanced PARPi-mediated PD-L1 upregulation. PARPi attenuated anticancer immunity via upregulation of PD-L1, and blockade of PD-L1 resensitized PARPi-treated cancer cells to T-cell killing. The combination of PARPi and anti-PD-L1 therapy compared with each agent alone significantly increased the therapeutic efficacy in vivoConclusions: Our study demonstrates a cross-talk between PARPi and tumor-associated immunosuppression and provides evidence to support the combination of PARPi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer. Clin Cancer Res; 23(14); 3711-20. ©2017 AACR.

Journal ArticleDOI
TL;DR: This review considers the role of ROS in the various stages of cancer development and provides evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells.

Journal ArticleDOI
31 Aug 2017-Nature
TL;DR: This work perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, using a genome-scale CRISPR–Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumours impaired the effector function of CD8+ T cells.
Abstract: Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR-Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.

Journal ArticleDOI
13 Nov 2017-eLife
TL;DR: An efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data is presented, which provides a unique novel experimental benchmark for immunogenomics analyses in cancer research.
Abstract: Malignant tumors do not only contain cancer cells. Normal cells from the body also infiltrate tumors. These often include a variety of immune cells that can help detect and kill cancer cells. Many evidences suggest that the proportion of different immune cell types in a tumor can affect tumor growth and which treatments are effective. Researchers often study tumors by measuring the expression of genes, i.e., which genes are active in tumors. However, the proportion of different cell types in the tumor is often not measured for tumors studied at the gene expression level. Racle et al. have now demonstrated that a new computer-based tool can accurately detect all the main cell types in a tumor directly from the expression of genes in this tumor. The tool is called “Estimating the Proportion of Immune and Cancer cells” – or EPIC for short. It compares the level of expression of genes in a tumor with a library of the gene expression profiles from specific cell types that can be found in tumors and uses this information to predict how many of each type of cell are present. Experimental measurements of several human tumors confirmed that EPIC’s predictions are accurate. EPIC is freely available online. Since the active genes in tumors from many patients have already been documented together with clinical data, researchers could use EPIC to investigate whether the cell types in a tumor affect how harmful it is or how well a particular treatment works on it. In the future, this information could help to identify the best treatment for a particular patient and may reveal new genes that cause malignant tumors to develop and grow.

Journal ArticleDOI
TL;DR: Future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials are highlighted and it remains an open question how nanommaterials can meet future demands for targeting and eradicating of C SCs.
Abstract: Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of cancer stem cells. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.

Journal ArticleDOI
16 Aug 2017-Nature
TL;DR: Insight is provided into the biology of PD-L1 regulation, a previously unrecognized master regulator of this critical immune checkpoint is identified, and a potential therapeutic target to overcome immune evasion by tumour cells is highlighted.
Abstract: Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.

Journal ArticleDOI
30 Mar 2017-Oncogene
TL;DR: It is shown that CAFs exposed to chemotherapy have an active role in regulating the survival and proliferation of cancer cells and the potential for exosome inhibitors as treatment options alongside chemotherapy for overcoming PDAC chemoresistance is shown.
Abstract: Cancer-associated fibroblasts (CAFs) comprise the majority of the tumor bulk of pancreatic ductal adenocarcinomas (PDACs). Current efforts to eradicate these tumors focus predominantly on targeting the proliferation of rapidly growing cancer epithelial cells. We know that this is largely ineffective with resistance arising in most tumors following exposure to chemotherapy. Despite the long-standing recognition of the prominence of CAFs in PDAC, the effect of chemotherapy on CAFs and how they may contribute to drug resistance in neighboring cancer cells is not well characterized. Here, we show that CAFs exposed to chemotherapy have an active role in regulating the survival and proliferation of cancer cells. We found that CAFs are intrinsically resistant to gemcitabine, the chemotherapeutic standard of care for PDAC. Further, CAFs exposed to gemcitabine significantly increase the release of extracellular vesicles called exosomes. These exosomes increased chemoresistance-inducing factor, Snail, in recipient epithelial cells and promote proliferation and drug resistance. Finally, treatment of gemcitabine-exposed CAFs with an inhibitor of exosome release, GW4869, significantly reduces survival in co-cultured epithelial cells, signifying an important role of CAF exosomes in chemotherapeutic drug resistance. Collectively, these findings show the potential for exosome inhibitors as treatment options alongside chemotherapy for overcoming PDAC chemoresistance.

Journal ArticleDOI
TL;DR: The findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.
Abstract: Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.

Journal ArticleDOI
TL;DR: Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells, however, the underlying mechanisms need further elucidation.
Abstract: CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases. CD44 has also been identified as a marker for stem cells of several types. Beside standard CD44 (sCD44), variant (vCD44) isoforms of CD44 have been shown to be created by alternate splicing of the mRNA in several cancer. Addition of new exons into the extracellular domain near the transmembrane of sCD44 increases the tendency for expressing larger size vCD44 isoforms. Expression of certain vCD44 isoforms was linked with progression and metastasis of cancer cells as well as patient prognosis. The expression of CD44 isoforms can be correlated with tumor subtypes and be a marker of cancer stem cells. CD44 cleavage, shedding, and elevated levels of soluble CD44 in the serum of patients is a marker of tumor burden and metastasis in several cancers including colon and gastric cancer. Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells. However, the underlying mechanisms need further elucidation.

Journal ArticleDOI
TL;DR: In this paper, the functional role of a novel circRNA, circCCDC66, in colorectal cancer (CRC) was characterized using RNA-Seq data from matched normal and tumor colon tissue samples.
Abstract: Circular RNA (circRNA) is a class of non-coding RNA whose functions remain mostly unknown. Recent studies indicate circRNA may be involved in disease pathogenesis, but direct evidence is scarce. Here we characterize the functional role of a novel circRNA, circCCDC66, in colorectal cancer (CRC). RNA-Seq data from matched normal and tumor colon tissue samples identified numerous circRNAs specifically elevated in cancer cells, several of which were verified by quantitative RT-PCR. CircCCDC66 expression was elevated in polyps and colon cancer and was associated with poor prognosis. Gain-of-function and loss-of-function studies in CRC cell-lines demonstrated that circCCDC66 controlled multiple pathological processes, including cell proliferation, migration, invasion, and anchorage-independent growth. In-depth characterization revealed that circCCDC66 exerts its function via regulation of a subset of oncogenes, and knockdown of circCCDC66 inhibited tumor growth and cancer invasion in xenograft and orthotopic mouse models, respectively. Taken together, these findings highlight a novel oncogenic function of circRNA in cancer progression and metastasis.

Journal ArticleDOI
29 Mar 2017-Nature
TL;DR: It is shown that human L GR5+ colorectal cancer cells serve as CSCs in growing cancer tissues and combined chemotherapy potentiates targeting of LGR5+ C SCs.
Abstract: The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5+ colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5+ tumour cells. Selective ablation of LGR5+ CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5+ CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5+ CSCs and contributing to tumour regrowth after LGR5+ CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5+ CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.

Journal ArticleDOI
TL;DR: The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol.
Abstract: Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol's in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.

Journal ArticleDOI
TL;DR: A comprehensive analysis of the role of the CXCL8-CXCR1/2 axis and select genes co-expressed in this pathway in disease progression is provided and the latest progress in developing small-molecule drugs targeting this pathway is discussed.
Abstract: The chemokine receptors CXCR1/2 and their ligand CXCL8 are essential for the activation and trafficking of inflammatory mediators as well as tumor progression and metastasis. The CXCL8-CXCR1/2 signaling axis is involved in the pathogenesis of several diseases including chronic obstructive pulmonary diseases (COPD), asthma, cystic fibrosis and cancer. Interaction between CXCL8 secreted by select cancer cells and CXCR1/2 in the tumor microenvironment is critical for cancer progression and metastasis. The CXCL8-CXCR1/2 axis may play an important role in tumor progression and metastasis by regulating cancer stem cell (CSC) proliferation and self-renewal. During the past two decades, several small-molecule CXCR1/2 inhibitors, CXCL8 releasing inhibitors, and neutralizing antibodies against CXCL8 and CXCR1/2 have been reported. As single agents, such inhibitors are expected to be efficacious in various inflammatory diseases. Several preclinical studies suggest that combination of CXCR1/2 inhibitors along with other targeted therapies, chemotherapies, and immunotherapy may be effective in treating select cancers. Currently, several of these inhibitors are in advanced clinical trials for COPD, asthma, and metastatic breast cancer. In this review, we provide a comprehensive analysis of the role of the CXCL8-CXCR1/2 axis and select genes co-expressed in this pathway in disease progression. We also discuss the latest progress in developing small-molecule drugs targeting this pathway.

Journal ArticleDOI
TL;DR: The mechanism of glutamine's regulation of tumor proliferation, metastasis, and global methylation is described and it is highlighted that clinical application of in vivo assessment of glutamines metabolism is critical for identifying new ways to treat patients through glutamine-based metabolic therapy.
Abstract: Glutamine is the most abundant circulating amino acid in blood and muscle and is critical for many fundamental cell functions in cancer cells, including synthesis of metabolites that maintain mitochondrial metabolism; generation of antioxidants to remove reactive oxygen species; synthesis of nonessential amino acids (NEAAs), purines, pyrimidines, and fatty acids for cellular replication; and activation of cell signaling. In light of the pleiotropic role of glutamine in cancer cells, a comprehensive understanding of glutamine metabolism is essential for the development of metabolic therapeutic strategies for targeting cancer cells. In this article, we review oncogene-, tumor suppressor–, and tumor microenvironment–mediated regulation of glutamine metabolism in cancer cells. We describe the mechanism of glutamine's regulation of tumor proliferation, metastasis, and global methylation. Furthermore, we highlight the therapeutic potential of glutamine metabolism and emphasize that clinical application of in vi...

Journal ArticleDOI
29 Nov 2017-Nature
TL;DR: The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time.
Abstract: Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.

Journal ArticleDOI
TL;DR: It is found that there is ample evidence of an essential role for glutamine in tumors and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment and other variables such as diet and host physiology collectively influence the role of glutamines in cancer.
Abstract: Reliance on glutamine has long been considered to be a hallmark of cancer cell metabolism. However, some recent studies have challenged this notion in vivo , prompting a need for further clarification of the role of glutamine metabolism in cancer. We find that there is ample evidence of an essential role for glutamine in tumors, and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment, and other variables such as diet and host physiology collectively influence the role of glutamine in cancer. Thus the requirements for glutamine in cancer are overall highly heterogeneous. In this review we discuss the implications both for basic science and for targeting glutamine metabolism in cancer therapy.