scispace - formally typeset
Search or ask a question
Topic

Cancer cell

About: Cancer cell is a research topic. Over the lifetime, 93402 publications have been published within this topic receiving 3512390 citations. The topic is also known as: cancerous cell & tumor cell.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival.

495 citations

Journal ArticleDOI
TL;DR: Several of these G‐quadruplex binding molecules have shown promising anticancer activity in tumour xenograft models, which indicate that the approach may be applicable to the treatment of a wide range of human cancers.
Abstract: The 3'-ends of human chromosomal DNA terminate in short single-stranded guanine-rich tandem-repeat sequences. In cancer cells, these are associated with the telomere-maintenance enzyme telomerase together with the end-binding protein hPOT1. Small molecules that can compete with these proteins and induce the single-stranded DNA to form quadruplex-ligand complexes are, in effect, able to expose these 3'-ends, which results in the activation of a DNA damage response and selective inhibition of cell growth. Several of these G-quadruplex binding molecules have shown promising anticancer activity in tumour xenograft models, which indicate that the approach may be applicable to the treatment of a wide range of human cancers. This minireview summarizes the available data on these compounds and the challenges posed for drug discovery.

494 citations

Journal ArticleDOI
TL;DR: It remains to be determined to what extent toxicity to normal tissues will limit application of apoptosis-based therapies for cancer treatment, and hope that improved clinical outcomes may not be far from realization is offered.

493 citations

Journal ArticleDOI
TL;DR: It is found that the HDACi suberoylanilide hydroxamic acid (SAHA) and MS-275, a benzamide, cause an accumulation of reactive oxygen species (ROS) and caspase activation in transformed but not normal cells.
Abstract: This study examines the basis of resistance and sensitivity of normal and transformed cells to histone deacetylase inhibitor (HDACi)-induced cell death, specifically the role of caspases and thioredoxin (Trx). An important attribute of HDACis is that they induce cancer cell death at concentrations to which normal cells are relatively resistant, making them well suited for cancer therapy. The mechanism underlying this selectivity has not been understood. In this study we found that the HDACi suberoylanilide hydroxamic acid (SAHA) and MS-275, a benzamide, cause an accumulation of reactive oxygen species (ROS) and caspase activation in transformed but not normal cells. Inhibition of caspases does not block HDACi-induced cell death. These studies provide a possible mechanism that can explain why normal but not certain transformed cells are resistant to HDACi-induced cell death. The HDACi causes an increase in the level of Trx, a major reducing protein for many targets, in normal cells but not in transformed cells. The SAHA-induced increase in Trx activity in normal cells is associated with no increase in ROS accumulation. Transfection of transformed cells with Trx small interfering RNA caused a marked decrease in the level of Trx protein with an increase in ROS, a decrease in cell proliferation, and an increase in sensitivity to SAHA-induced cell death. Thus, Trx, independent of the caspase apoptotic pathway, is an important determinant of resistance of cells to HDACi-induced cell death.

493 citations

Journal ArticleDOI
TL;DR: A role for N-cadherin during contact inhibition of locomotion is shown and a mechanism of chemoattraction likely to function during both embryogenesis and cancer metastasis is revealed, whereby attractants such as Sdf1 amplify and stabilize contact-dependent cell polarity, resulting in directional collective migration.

492 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cancer
339.6K papers, 10.9M citations
89% related
Cytotoxic T cell
92.4K papers, 4.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,549
20225,645
20216,773
20207,065
20196,724
20186,305