scispace - formally typeset
Search or ask a question
Topic

Cancer cell

About: Cancer cell is a research topic. Over the lifetime, 93402 publications have been published within this topic receiving 3512390 citations. The topic is also known as: cancerous cell & tumor cell.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigations of epigenetic mechanisms of the cellular microenvironment on basic biological properties of cancer cells, including the induction of proliferation gradients and quiescence, should be intensified in future research on cell aggregates.
Abstract: Cellular aggregates have been used in developmental biology and in experimental cancer research for several decades. Spherical aggregates of malignant cells, i.e. multicellular tumor spheroids, may serve as in vitro models of tumor microregions and of an early, avascular stage of tumor growth. The similarities between the original tumor and the respective spheroids include volume growth kinetics, cellular heterogeneity, e.g. the induction of proliferation gradients and quiescence, as well as differentiation characteristics, such as the development of specific histological structures or the expression of antigens. Research using cell aggregates has been focussed on mechanisms involved in the control of proliferation, invasion and metastasis. Immunological studies with spheroids have resulted in the characterization of defense cells which are responsible for specific host-versus-tumor reactions. The vast majority of investigations on spheroids concerns the simulation of therapy with regard to various treatment modalities, combination treatments and systematic analyses of using various endpoints in predictive assays. Only a few pathophysiological studies on the interrelationship among tumor-specific micromilieu, cellular metabolism, proliferative status, and cellular viability have been undertaken with the spheroid model up to now. Since these studies are indicative of a large influence of the cellular microenvironment on basic biological properties of cancer cells, investigations of these epigenetic mechanisms should be intensified in future research on cell aggregates. Similarly, the molecular basis of the biological peculiarities found in malignant cells grown as three-dimensional aggregates has to be investigated more intensively.

407 citations

Journal ArticleDOI
03 Mar 2011-Cancers
TL;DR: The regulatory mechanisms of p53 and also p53-mediated therapeutic strategies to cure malignant cancers are described and the DNA-binding activity of p 53 is tightly linked to its tumor suppressive function.
Abstract: p53 is a nuclear transcription factor with a pro-apoptotic function. Since over 50% of human cancers carry loss of function mutations in p53 gene, p53 has been considered to be one of the classical type tumor suppressors. Mutant p53 acts as the dominant-negative inhibitor toward wild-type p53. Indeed, mutant p53 has an oncogenic potential. In some cases, malignant cancer cells bearing p53 mutations display a chemo-resistant phenotype. In response to a variety of cellular stresses such as DNA damage, p53 is induced to accumulate in cell nucleus to exert its pro-apoptotic function. Activated p53 promotes cell cycle arrest to allow DNA repair and/or apoptosis to prevent the propagation of cells with serious DNA damage through the transactivation of its target genes implicated in the induction of cell cycle arrest and/or apoptosis. Thus, the DNA-binding activity of p53 is tightly linked to its tumor suppressive function. In the present review article, we describe the regulatory mechanisms of p53 and also p53-mediated therapeutic strategies to cure malignant cancers.

406 citations

Journal ArticleDOI
TL;DR: This study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.
Abstract: Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc) We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells

406 citations

Journal ArticleDOI
TL;DR: Some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptosis pathways contribute to cancer, and list several agents being developed to target apoptosis are introduced.
Abstract: Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.

405 citations

Journal ArticleDOI
TL;DR: These findings demonstrate the angiogenic function of Slit-Robo signaling, reveal a mechanism in mediating the crosstalk between cancer cells and endothelial cells, and indicate the effectiveness of blocking this signaling pathway in treating cancers.

405 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cancer
339.6K papers, 10.9M citations
89% related
Cytotoxic T cell
92.4K papers, 4.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,549
20225,645
20216,773
20207,065
20196,724
20186,305