scispace - formally typeset
Search or ask a question
Topic

Cancer cell

About: Cancer cell is a research topic. Over the lifetime, 93402 publications have been published within this topic receiving 3512390 citations. The topic is also known as: cancerous cell & tumor cell.


Papers
More filters
Journal ArticleDOI
TL;DR: The mixture of cytokines that is produced in the tumour microenvironment has an important role in cancer pathogenesis and provides new opportunities for improving cancer immunotherapy.
Abstract: The mixture of cytokines that is produced in the tumour microenvironment has an important role in cancer pathogenesis. Cytokines that are released in response to infection, inflammation and immunity can function to inhibit tumour development and progression. Alternatively, cancer cells can respond to host-derived cytokines that promote growth, attenuate apoptosis and facilitate invasion and metastasis. A more detailed understanding of cytokine–tumour-cell interactions provides new opportunities for improving cancer immunotherapy.

1,410 citations

01 Aug 2009
TL;DR: The high incidence of APA in cancer cells, with consequent loss of 3'UTR repressive elements, suggests a pervasive role forAPA in oncogene activation without genetic alteration.
Abstract: SUMMARY In cancer cells, genetic alterations can activate proto-oncogenes, thereby contributing to tumorigenesis. However, the protein products of oncogenes are sometimes overexpressed without alteration of the proto-oncogene. Helping to explain this phenomenon, we found that when compared to similarly proliferating nontransformed cell lines, cancer cell lines often expressed substantial amounts of mRNA isoforms with shorter 3 0 untranslated regions (UTRs). These shorter isoforms usually resulted from alternative cleavage and polyadenylation (APA). The APA had functional consequences, with the shorter mRNA isoforms exhibiting increased stability and typically producing ten-fold more protein, in part through the loss of microRNA-mediated repression. Moreover, expression of the shorter mRNA isoform of the proto-oncogene IGF2BP1/IMP-1 led to far more oncogenic transformation than did expression of the full-length, annotated mRNA. The high incidence of APA in cancer cells, with consequent loss of 3 0 UTR repressive elements, suggests a pervasive

1,404 citations

Journal ArticleDOI
01 Jan 1985-Nature
TL;DR: The ability of cancer cells to produce and to respond to their own growth factors (autocrine secretion) has become a central concept linking oncogene and growth factor research.
Abstract: The ability of cancer cells to produce and to respond to their own growth factors (autocrine secretion) has become a central concept linking oncogene and growth factor research. Oncogenes confer growth factor autonomy on cells not only by coding directly for autocrine peptide growth factors or their receptors, but also by amplifying the mitogenic signals generated by a growth factor at its receptor. Antagonists of positive autocrine growth factors can inhibit growth of cancer cells in experimental animals. Recently identified negative autocrine growth factors might themselves control aberrant cell growth.

1,404 citations

Journal ArticleDOI
07 Aug 2006-Oncogene
TL;DR: The increased dependence of cancer cells on glycolytic pathway for ATP generation provides a biochemical basis for the design of therapeutic strategies to preferentially kill cancer cells by pharmacological inhibition of Glycolysis.
Abstract: Most cancer cells exhibit increased glycolysis and use this metabolic pathway for generation of ATP as a main source of their energy supply. This phenomenon is known as the Warburg effect and is considered as one of the most fundamental metabolic alterations during malignant transformation. In recent years, there are significant progresses in our understanding of the underlying mechanisms and the potential therapeutic implications. Biochemical and molecular studies suggest several possible mechanisms by which this metabolic alteration may evolve during cancer development. These mechanisms include mitochondrial defects and malfunction, adaptation to hypoxic tumor microenvironment, oncogenic signaling, and abnormal expression of metabolic enzymes. Importantly, the increased dependence of cancer cells on glycolytic pathway for ATP generation provides a biochemical basis for the design of therapeutic strategies to preferentially kill cancer cells by pharmacological inhibition of glycolysis. Several small molecules have emerged that exhibit promising anticancer activity in vitro and in vivo, as single agent or in combination with other therapeutic modalities. The glycolytic inhibitors are particularly effective against cancer cells with mitochondrial defects or under hypoxic conditions, which are frequently associated with cellular resistance to conventional anticancer drugs and radiation therapy. Because increased aerobic glycolysis is commonly seen in a wide spectrum of human cancers and hypoxia is present in most tumor microenvironment, development of novel glycolytic inhibitors as a new class of anticancer agents is likely to have broad therapeutic applications.

1,403 citations

Journal ArticleDOI
TL;DR: It is shown that global repression of miRNA maturation promotes cellular transformation and tumorigenesis, and abrogation of global miRNA processing promotes tumorigenisation.
Abstract: MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate the expression of target mRNA transcripts. Many of these target mRNA transcripts are involved in proliferation, differentiation and apoptosis, processes commonly altered during tumorigenesis. Recent work has shown a global decrease of mature miRNA expression in human cancers. However, it is unclear whether this global repression of miRNAs reflects the undifferentiated state of tumors or causally contributes to the transformed phenotype. Here we show that global repression of miRNA maturation promotes cellular transformation and tumorigenesis. Cancer cells expressing short hairpin RNAs (shRNAs) targeting three different components of the miRNA processing machinery showed a substantial decrease in steady-state miRNA levels and a more pronounced transformed phenotype. In animals, miRNA processing-impaired cells formed tumors with accelerated kinetics. These tumors were more invasive than control tumors, suggesting that global miRNA loss enhances tumorigenesis. Furthermore, conditional deletion of Dicer1 enhanced tumor development in a K-Ras-induced mouse model of lung cancer. Overall, these studies indicate that abrogation of global miRNA processing promotes tumorigenesis.

1,400 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cancer
339.6K papers, 10.9M citations
89% related
Cytotoxic T cell
92.4K papers, 4.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,549
20225,645
20216,773
20207,065
20196,724
20186,305