scispace - formally typeset
Search or ask a question
Topic

Cancer cell

About: Cancer cell is a research topic. Over the lifetime, 93402 publications have been published within this topic receiving 3512390 citations. The topic is also known as: cancerous cell & tumor cell.


Papers
More filters
Journal ArticleDOI
19 Dec 2013-Cell
TL;DR: Three-dimensional organoid assays to identify the most invasive cancer cells in primary breast tumors reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion and suggest that targeting the basal invasive program could limit metastatic progression.

653 citations

Journal ArticleDOI
TL;DR: In vivo treatment of tumors in C57BL/6 and BALB/c mice resulted in significant slowing of tumor growth and extensive destruction of tumor cells within 3-6 days, demonstrating the potential applicability of the described electric fields as a novel therapeutic modality for malignant tumors.
Abstract: Low-intensity, intermediate-frequency (100–300 kHz), alternating electric fields, delivered by means of insulated electrodes, were found to have a profound inhibitory effect on the growth rate of a variety of human and rodent tumor cell lines (Patricia C, U-118, U-87, H-1299, MDA231, PC3, B16F1, F-98, C-6, RG2, and CT-26) and malignant tumors in animals. This effect, shown to be nonthermal, selectively affects dividing cells while quiescent cells are left intact. These fields act in two modes: arrest of cell proliferation and destruction of cells while undergoing division. Both effects are demonstrated when such fields are applied for 24 h to cells undergoing mitosis that is oriented roughly along the field direction. The first mode of action is manifested by interference with the proper formation of the mitotic spindle, whereas the second results in rapid disintegration of the dividing cells. Both effects, which are frequency dependent, are consistent with the computed directional forces exerted by these specific fields on charges and dipoles within the dividing cells. In vivo treatment of tumors in C57BL/6 and BALB/c mice (B16F1 and CT-26 syngeneic tumor models, respectively), resulted in significant slowing of tumor growth and extensive destruction of tumor cells within 3–6 days. These findings demonstrate the potential applicability of the described electric fields as a novel therapeutic modality for malignant tumors.

653 citations

Journal ArticleDOI
TL;DR: How ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy is summarized.
Abstract: Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.

652 citations

Journal ArticleDOI
TL;DR: Potent, specific, non-peptide small-molecule inhibitors of the MDM2-p53 interaction were successfully designed and the most potent inhibitor (MI-63) has excellent specificity over cancer cells with deleted p53 and shows a minimal toxicity to normal cells.
Abstract: Potent, specific, non-peptide small-molecule inhibitors of the MDM2−p53 interaction were successfully designed. The most potent inhibitor (MI-63) has a Ki value of 3 nM binding to MDM2 and greater than 10 000-fold selectivity over Bcl-2/Bcl-xL proteins. MI-63 is highly effective in activation of p53 function and in inhibition of cell growth in cancer cells with wild-type p53 status. MI-63 has excellent specificity over cancer cells with deleted p53 and shows a minimal toxicity to normal cells.

652 citations

Journal ArticleDOI
11 Jul 2003-Cell
TL;DR: It is found that the matrix metalloproteinase, MT1-MMP, confers tumor cells with a distinct 3D growth advantage in vitro and in vivo and requires pericellular proteolysis of the ECM.

650 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cancer
339.6K papers, 10.9M citations
89% related
Cytotoxic T cell
92.4K papers, 4.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,549
20225,645
20216,773
20207,065
20196,724
20186,305