scispace - formally typeset
Search or ask a question
Topic

Cancer cell

About: Cancer cell is a research topic. Over the lifetime, 93402 publications have been published within this topic receiving 3512390 citations. The topic is also known as: cancerous cell & tumor cell.


Papers
More filters
Journal ArticleDOI
11 Dec 2015-Cancers
TL;DR: It is shown that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions, and CAFs contribute to drug-resistance acquisition in cancer cells.
Abstract: Cancer tissues are composed of cancer cells and the surrounding stromal cells (e.g., fibroblasts, vascular endothelial cells, and immune cells), in addition to the extracellular matrix. Most studies investigating carcinogenesis and the progression, invasion, metastasis, and angiogenesis of cancer have focused on alterations in cancer cells, including genetic and epigenetic changes. Recently, interactions between cancer cells and the stroma have attracted considerable attention, and increasing evidence has accumulated on this. Several researchers have gradually clarified the origins, features, and roles of cancer-associated fibroblasts (CAFs), a major component of the cancer stroma. CAFs function in a similar manner to myofibroblasts during wound healing. We previously reported the relationship between CAFs and angiogenesis. Interleukin-6 (IL-6), a multifunctional cytokine, plays a central role in regulating inflammatory and immune responses, and important roles in the progression, including proliferation, migration, and angiogenesis, of several cancers. We showed that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions. Furthermore, CAFs contribute to drug-resistance acquisition in cancer cells. The interaction between cancer cells and the stroma could be a potential target for anti-cancer therapy.

620 citations

Journal Article
TL;DR: Results suggest that troglitazone may be a useful therapeutic agent for the treatment of prostate cancer, especially in the setting of low disease burden.
Abstract: Troglitazone, a thiazolidinedione derivative, is a widely used antidiabetic drug that binds and activates peroxisome proliferator-activated receptor gamma (PPARgamma) and enhances insulin sensitivity. It induces differentiation of adipocytes, which highly express PPARgamma. We report that human prostate cancer cells expressed PPARgamma at prominent levels and normal prostate tissues had very low expression. Dose-response clonogenic assays of the PC-3 prostate cancer cell line with troglitazone showed an antiproliferative effect (ED50, 3 x 10(-7) M) and other PPARgamma ligands (BRL49653: ED50, 8 x 10(-8) M; 15-deoxy-delta12,14-prostaglandin J2: ED50, 2 x 10(-6) M; ciglitizone: ED50, not reached; indomethacin: ED50, not reached) showed similar effects. Combinations of troglitazone and a ligand specific for either retinoid X receptor or retinoic acid receptor did not show a synergistic effect. Pulse-exposure to troglitazone (10(-5) M) for different durations showed that 4 days of pulse-exposure to the agent irreversibly inhibited 50% clonal growth of PC-3 cells. Interestingly, PC-3 cells cultured with troglitazone (10(-5) M) showed dramatic morphological changes both by light and electron microscopy, suggesting that the cells became less malignant. Nevertheless, troglitazone did not affect either the cell cycle or several markers of differentiation. LNCaP cells constitutively produced prostate-specific antigen, and levels were markedly enhanced by all-trans-retinoic acid. Troglitazone (10(-5) M, 4 days) decreased by 50% the levels of prostate-specific antigen produced by these cells. In vivo treatment of PC-3 tumors growing in male BNX triple immunodeficient mice with oral troglitazone (500 mg/kg/day) produced significant inhibition of tumor growth (P = 0.01). The only objective side effect of troglitazone in mice was the elevation of serum transaminases. Short-term culture of four surgically obtained human prostate cancer tumors with troglitazone (10(-5) M, 4 days) produced marked and selective necrosis of the cancer cells (about 60%) but not the adjacent normal prostate cells. Taken together, these results suggest that troglitazone may be a useful therapeutic agent for the treatment of prostate cancer, especially in the setting of low disease burden.

618 citations

Journal ArticleDOI
TL;DR: Using live cell imaging and fibronectin micropatterns, it is found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes.
Abstract: Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.

617 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the neutral sphyngomyelinase 2 (nSMase2) regulates exosomal microRNA (miRNA) secretion and promotes angiogenesis within the tumor microenvironment as well as metastasis, suggesting that the horizontal transfer of exosome miRNAs from cancer cells can dictate the microenviromental niche for the benefit of the cancer cell.

617 citations

Journal ArticleDOI
TL;DR: Key characteristics of current, clinically active antibody-drug conjugate patients are summarized and recent clinical data illustrating the benefit of antibody-targeted delivery of cytotoxic agents to cancer cells are highlighted.
Abstract: An antibody-drug conjugate (ADC) provides the possibility of selectively ablating cancer cells by combining the specificity of a monoclonal antibody (mAb) for a target antigen with the delivery of a highly potent cytotoxic agent. ADC target antigens are typically highly expressed on the surface of cancer cells compared to normal cells. The tumor target, the cytotoxic agent, and the manner in which the agent is attached to the antibody are key determinants of clinical activity and tolerability. Recently, several clinical trials have demonstrated that ADCs achieve higher clinical response rates than unconjugated mAbs targeting the same cell surface antigen. Brentuximab vedotin represents one such ADC that has recently been approved for the treatment of relapsed Hodgkin and systemic anaplastic large cell lymphomas--both characterized by high expression of the target antigen, CD30, on the surface of malignant cells. This review summarizes key characteristics of current, clinically active ADCs and highlights recent clinical data illustrating the benefit of antibody-targeted delivery of cytotoxic agents to cancer cells.

617 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cancer
339.6K papers, 10.9M citations
89% related
Cytotoxic T cell
92.4K papers, 4.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,549
20225,645
20216,773
20207,065
20196,724
20186,305