scispace - formally typeset
Search or ask a question
Topic

Capacitance

About: Capacitance is a research topic. Over the lifetime, 69666 publications have been published within this topic receiving 1039557 citations. The topic is also known as: electrostatic capacity & electric capacitance.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively.
Abstract: Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g−1 and high energy density of 77.8 Wh kg−1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.

1,808 citations

Journal ArticleDOI
TL;DR: By replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation.
Abstract: It is well-known that conventional field effect transistors (FETs) require a change in the channel potential of at least 60 mV at 300 K to effect a change in the current by a factor of 10, and this minimum subthreshold slope S puts a fundamental lower limit on the operating voltage and hence the power dissipation in standard FET-based switches. Here, we suggest that by replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation. The voltage transformer action can be understood intuitively as the result of an effective negative capacitance provided by the ferroelectric capacitor that arises from an internal positive feedback that in principle could be obtained from other microscopic mechanisms as well. Unlike other proposals to reduce S, this involves no change in the basic physics of the FET and thus does not affect its current drive or impose other restrictions.

1,722 citations

Journal ArticleDOI
18 Dec 2015-Science
TL;DR: It is found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed and can store a specific energy of 41 watt-hours per kilogram (19.5 watt- hours per liter).
Abstract: Carbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity. These bipolar aqueous-electrolyte electrochemical cells offer power densities and lifetimes similar to those of carbon-based supercapacitors and can store a specific energy of 41 watt-hours per kilogram (19.5 watt-hours per liter).

1,719 citations

Journal ArticleDOI
TL;DR: In this paper, the results obtained on the electrochemical behavior of electrochemical capacitors assembled in nonaqueous electrolyte are presented and the impedance of the supercapacitors is discussed in terms of complex capacitance and complex power.
Abstract: This paper presents the results obtained on the electrochemical behavior of electrochemical capacitors assembled in nonaqueous electrolyte. The first part is devoted to the electrochemical characterization of carbon-carbon 4 cm2 cells systems in terms of capacitance, resistance, and cyclability. The second part is focused on the electrochemical impedance spectroscopy study of the cells. Nyquist plots are presented and the impedance of the supercapacitors is discussed in terms of complex capacitance and complex power. This allows the determination of a relaxation time constant of the systems, and the real and the imaginary part of the complex power vs. the frequency plots give information on the supercapacitor cells frequency behavior. The complex impedance plots for both a supercapacitor and a tantalum dielectric capacitor cells are compared. © 2003 The Electrochemical Society. All rights reserved.

1,674 citations

Journal ArticleDOI
TL;DR: In this article, a realistic characterization of the Si-SiO 2 interface is developed, where a continuum of states is found across the band gap of the silicon, and the dominant contribution in the samples measured arises from a random distribution of surface charge.
Abstract: Measurements of the equivalent parallel conductance of metal-insulator-semiconductor (MIS) capacitors are shown to give more detailed and accurate information about interface states than capacitance measurements. Experimental techniques and methods of analysis are described. From the results of the conductance technique, a realistic characterization of the Si–SiO 2 interface is developed. Salient features are: A continuum of states is found across the band gap of the silicon. Capture cross sections for holes and electrons are independent of energy over large portions of the band gap. The surface potential is subject to statistical fluctuations arising from various sources. The dominant contribution in the samples measured arises from a random distribution of surface charge. The fluctuating surface potential causes a dispersion of interface state time constants in the depletion region. In the weak inversion region the dispersion is eliminated by interaction between interface states and the minority carrier band. A single time constant results. From the experimentally established facts, equivalent circuits accurately describing the measurements are constructed.

1,658 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
90% related
Silicon
196K papers, 3M citations
88% related
Thin film
275.5K papers, 4.5M citations
88% related
Anode
139.4K papers, 2.1M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,775
20225,573
20212,188
20202,782
20193,170
20183,334