scispace - formally typeset
Topic

Carbide

About: Carbide is a(n) research topic. Over the lifetime, 36331 publication(s) have been published within this topic receiving 503586 citation(s).


Papers
More filters
Book
01 May 1971

2,901 citations

Journal ArticleDOI
27 Sep 2013-Science
TL;DR: This study demonstrates the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers, and provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.
Abstract: The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors However, few host materials are known for ions much larger than lithium We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface A variety of cations, including Na+, K+, NH4+, Mg2+, and Al3+, can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons) This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions

2,245 citations

Journal ArticleDOI
13 Feb 2012-ACS Nano
TL;DR: Evidence is presented for the exfoliation of the following MAX phases by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication.
Abstract: Herein we report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Herein we present evidence for the exfoliation of the following MAX phases: Ti2AlC, Ta4AlC3, (Ti0.5,Nb0.5)2AlC, (V0.5,Cr0.5)3AlC2, and Ti3AlCN by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication. The removal of the “A” group layer from the MAX phases results in 2-D layers that we are labeling MXenes to denote the loss of the A element and emphasize their structural similarities with graphene. The sheet resistances of the MXenes were found to be comparable to multilayer graphene. Contact angle measurements with water on pressed MXene surfaces showed hydrophilic behavior.

2,094 citations

Journal ArticleDOI
10 Aug 1973-Science
TL;DR: Tungsten carbide catalyzes the formation of water from hydrogen and oxygen at room temperature, the reduction of tungsten trioxide by hydrogen in the presence of water, and the isomerization of 2,2-dimethylpropane to 2-methylbutane.
Abstract: Tungsten carbide catalyzes the formation of water from hydrogen and oxygen at room temperature, the reduction of tungsten trioxide by hydrogen in the presence of water, and the isomerization of 2,2-dimethylpropane to 2-methylbutane. This catalytic behavior, which is typical of platinum, is not exhibited at all by tungsten. The surface electronic properties of the latter are therefore modified by carbon in such a way that they resemble those of platinum.

1,563 citations

Journal ArticleDOI
TL;DR: In this article, the main problems associated with the machining of titanium as well as tool wear and the mechanisms responsible for tool failure are discussed. But no equivalent development has been made for cutting titanium alloys due primarily to their peculiar characteristics.
Abstract: Although there have been great advances in the development of cutting tool materials which have significantly improved the machinability of a large number of metallic materials, including cast irons, steels and some high temperature alloys such as nickel-based alloys, no equivalent development has been made for cutting titanium alloys due primarily to their peculiar characteristics. This paper reviews the main problems associated with the machining of titanium as well as tool wear and the mechanisms responsible for tool failure. It was found that the straight tungsten carbide (WC/Co) cutting tools continue to maintain their superiority in almost all machining processes of titanium alloys, whilst CVD coated carbides and ceramics have not replaced cemented carbides due to their reactivity with titanium and their relatively low fracture toughness as well as the poor thermal conductivity of most ceramics. This paper also discusses special machining methods, such as rotary cutting and the use of ledge tools, which have shown some success in the machining of titanium alloys.

1,264 citations

Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
87% related
Coating
379.8K papers, 3.1M citations
86% related
Amorphous solid
117K papers, 2.2M citations
85% related
Thin film
275.5K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202245
2021971
20201,274
20191,412
20181,471
20171,346