scispace - formally typeset
Search or ask a question
Topic

Carbon nanotube supported catalyst

About: Carbon nanotube supported catalyst is a research topic. Over the lifetime, 5028 publications have been published within this topic receiving 186152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography, and opens the door to carbon-nanotube-based applications in biotechnology.
Abstract: Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.

2,620 citations

Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication under plasma-enhanced hot filament chemical vapor deposition.
Abstract: Free-standing aligned carbon nanotubes have previously been grown above 700°C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666°C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas was used as the carbon source and ammonia gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

2,530 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: In this article, the authors demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water.
Abstract: We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned, highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis.

2,405 citations

Journal Article
TL;DR: Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotubes material with carbon purity above 99.98%.

2,241 citations

Journal ArticleDOI
TL;DR: In this paper, single-walled carbon nanotubes (SWNTs) have been produced in a gas-phase catalytic process, where catalysts for SWNT growth form in situ by thermal decomposition of iron pentacarbonyl in a heated flow of carbon monoxide at pressures of 1-10 atm and temperatures of 800-1200°C.

1,812 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
87% related
Graphene
144.5K papers, 4.9M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Catalysis
400.9K papers, 8.7M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202221
20213
20202
20191
201814